

4701 W. Russell Rd Suite 200 Las Vegas, NV 89118-2231 Phone (702) 455-5942 Fax (702) 383-9994

# PART 70 TECHNICAL SUPPORT DOCUMENT (STATEMENT of BASIS)

# APPLICATION FOR:

# **Renewal of Part 70 Operating Permit**

SUBMITTED BY: Calnev Pipe Line LLC Source ID: 00013

LOCATION: 5049 North Sloan Lane Las Vegas, Nevada, 89115

SIC code 4226, "Special Warehousing and Storage, Not Elsewhere Classified" NAICS code 493190, "Other Warehousing and Storage"

Application Received: November 16, 2021

TSD Date: January 29, 2024

# **EXECUTIVE SUMMARY**

Calnev Pipe Line LLC is a bulk fuel storage and transfer operation located in Hydrographic Area 212, which is currently designated as an attainment area for all regulated air pollutants except ozone, which was classified as a moderate nonattainment area on January 5, 2023. The source is a Categorical Stationary Source, as defined by AQR 12.2.2(j)(23): petroleum storage and transfer units with total storage capacity exceeding 300,000 barrels. The source is a major source for volatile organic compound (VOC) pollutants and a minor source for all other criteria pollutants and HAP. The source consists of petroleum storage tanks, vapor holding tank, loading lanes, diesel-powered air compressor, diesel-powered fire water engine, cooling tower, wastewater treatment system, and haul roads. The source falls under SIC Code 4226: Special Warehousing and Storage, Not Elsewhere Classified and NAICS Code 493190: Other Warehousing and Storage.

Fuels are delivered to the site by two underground pipelines originating in southern California. Incoming fuels are diverted to storage tanks. From these storage vessels fuels are piped to other terminals or loaded onto delivery trucks. As the trucks are filled, specialized additives are injected according to customer's specifications.

The following table summarizes the source's potential to emit (PTE) each regulated air pollutant from all emission units addressed by this Part 70 Operating Permit.

| Pollutant                                   | <b>PM</b> <sub>10</sub> | <b>PM</b> <sub>2.5</sub> | NOx  | CO   | SO <sub>2</sub> | VOC    | HAPs <sup>1</sup>  | Pb | H <sub>2</sub> S | GHG <sup>2</sup> |
|---------------------------------------------|-------------------------|--------------------------|------|------|-----------------|--------|--------------------|----|------------------|------------------|
| Tons/year                                   | 8.40                    | 1.42                     | 3.26 | 2.55 | 0.18            | 188.00 | 9.30               | 0  | 0                | 11,440.88        |
| Major Source<br>Thresholds<br>(Categorical) | 100                     | 100                      | 100  | 100  | 100             | 100    | 10/25 <sup>1</sup> |    |                  | 100,000          |

 Table 1: Source-wide Potential to Emit

<sup>1</sup> A major source is defined as 10 tons for any individual HAP or 25 tons for combination of all HAPs.

<sup>2</sup> Metric tons per year of carbon dioxide equivalent. GHG = greenhouse gas pollutants.

This Technical Support Document (TSD) accompanies the proposed Part 70 Operating Permit for Calnev Pipe Line LLC.

# **TABLE OF CONTENTS**

| Page |
|------|
| Page |

| SOURCE INFORMATION6General6Description of Process.6Permitting History6Current Permitting Action6Risk Management Plan7Butane Blending7Rule Applicability Revisited8NAICS code Update9 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMISSIONS INFORMATION                                                                                                                                                                |
| OPERATIONAL LIMITATIONS14Loading Racks15Offloading Rack16Auxiliary Flare16Ethanol Unloading System16Haul Road16Engines16                                                             |
| CONTROL TECHNOLOGY                                                                                                                                                                   |
| APPLICABLE REQUIREMENTS                                                                                                                                                              |
| MONITORING                                                                                                                                                                           |
| PERFORMANCE TESTING                                                                                                                                                                  |
| RECORDKEEPING AND REPORTING                                                                                                                                                          |
| PUBLIC PARTICIPATION                                                                                                                                                                 |
| INCREMENT ANALYSIS                                                                                                                                                                   |
| ENVIRONEMENTAL JUSTICE                                                                                                                                                               |
| ATTACHMENTS                                                                                                                                                                          |

# LIST OF TABLES

| Table 1. Actions Since the Last Renewal                                 | 6  |
|-------------------------------------------------------------------------|----|
| Table 2. Application Submittals Included in this Action                 | 6  |
| Table 3. PTE of Blending Process and Emissions Increase (tons per year) | 8  |
| Table 4. Emission Units List                                            | 9  |
| Table 5. Summary of Insignificant Activities                            | 13 |
| Table 6. Source-wide PTE (tons per year)                                | 14 |

|                                          | Technical Support Document for Part 70 OP |
|------------------------------------------|-------------------------------------------|
|                                          | Calney Pipe Line LLC                      |
|                                          | Source: 00013                             |
|                                          | Page 4 of 33                              |
|                                          |                                           |
| Table 7. Source-wide PTE (tons per year) |                                           |

# ACRONYMS AND ABBREVIATIONS

(These terms may be seen in the technical support document)

| AOS                     | alternate operating scenario                                                                                      |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| AOR                     | Clark County Air Quality Regulations                                                                              |
| AST                     | aboveground storage tank                                                                                          |
| ATC                     | Authority to Construct                                                                                            |
| CAAA                    | Clean Air Act. as amended, or Clean Air Act Amendments                                                            |
| CE                      | control efficiency                                                                                                |
| CEMS                    | continuous emissions monitoring system                                                                            |
| CF                      | control factor                                                                                                    |
| CFR                     | United States Code of Federal Regulations                                                                         |
| CO                      | carbon monoxide                                                                                                   |
| DAQ                     | Division of Air Quality                                                                                           |
| DES                     | Department of Environment and Sustainability                                                                      |
| EF                      | emission factor                                                                                                   |
| EPA                     | United States Environmental Protection Agency                                                                     |
| EU                      | emission unit                                                                                                     |
| FAR                     | final action report                                                                                               |
| GDO                     | gasoline dispensing operation                                                                                     |
| GHG                     | greenhouse gas                                                                                                    |
| HAP                     | hazardous air pollutant                                                                                           |
| HP                      | horsepower                                                                                                        |
| $H_2S$                  | hydrogen sulfide                                                                                                  |
| MMBtu                   | Millions of British Thermal Units                                                                                 |
| NEI                     | net emission increase                                                                                             |
| NESHAP                  | National Emission Standards for Hazardous Air Pollutants                                                          |
| NMHC                    | non-methane hydrocarbons                                                                                          |
| NO <sub>X</sub>         | nitrogen oxides                                                                                                   |
| NOV                     | Notice of Violation                                                                                               |
| NRS                     | Nevada Revised Statutes                                                                                           |
| NSPS                    | New Source Performance Standards                                                                                  |
| NSR                     | New Source Review                                                                                                 |
| OP                      | Operating Permit                                                                                                  |
| <b>PM</b> <sub>10</sub> | particulate matter less than 10 microns                                                                           |
| ppm                     | parts per million                                                                                                 |
| PSD                     | Prevention of Significant Deterioration                                                                           |
| PTE                     | potential to emit                                                                                                 |
| RATA                    | Relative Accuracy Test Audit                                                                                      |
| RMP                     | risk management plan                                                                                              |
| scf                     | standard cubic feet                                                                                               |
| SDS                     | safety data sheets                                                                                                |
| SIP                     | State Implementation Plan                                                                                         |
| $SO_2$                  | sulfur dioxide                                                                                                    |
| TDS                     |                                                                                                                   |
| 105                     | total dissolved solids                                                                                            |
| TSD                     | total dissolved solids<br>Technical Support Document                                                              |
| TSD<br>TSP              | total dissolved solids<br>Technical Support Document<br>total suspended particulates                              |
| TSD<br>TSP<br>VOC       | total dissolved solids<br>Technical Support Document<br>total suspended particulates<br>volatile organic compound |

# SOURCE INFORMATION

<u>General</u>

| Permittee:            | Calnev Pipe Line LLC                       |
|-----------------------|--------------------------------------------|
| Responsible Official: | John Pannell, Vice President of Operations |
| Phone Number:         | (713) 420-4945                             |

## **Description of Process**

Kinder Morgan's subsidiary Calnev Pipe Line, LLC (Calnev) owns and operates a petroleum products distribution terminal facility at 5049 North Sloan Lane in Las Vegas, Nevada. Las Vegas Terminal (LVT) operations include receiving petroleum fuel products via pipeline or truck and transferring gasoline, diesel, and biodiesel from storage tanks into trucks via loading racks.

### Permitting History

## Table 1. Actions Since the Last Renewal

| Issued Date | Description               |
|-------------|---------------------------|
| 11/18/2021  | Part 70 ATC — 124.3.2(b)  |
| 6/25/2019   | Part 70 ATC — 12.4.3.2(b) |
| 6/1/2017    | Title V OP — Renewal      |

ATC = Authority to Construct Permit.

### Current Permitting Action

Calnev submitted the applications, shown in Table 2, to the Clark County Department of Environment & Sustainability, Division of Air Quality (DAQ). Emissions of air pollutants from the LVT are regulated under the jurisdiction of DAQ, and the facility operates under a DAQ-issued Part 70 Operating Permit.

| Submittal Date | Application Type                      | Description                                                         |
|----------------|---------------------------------------|---------------------------------------------------------------------|
| 6/17/2021      | Part 70 ATC – 12.4.3.2(b)             | Adding butane blending process                                      |
| 11/16/2021     | Title V OP - Renewal                  | Renewal, adding butane blending tank, minor edits                   |
| 2/23/2022      | Part 70 ATC – Administrative Revision | Include inspection and maintenance under 40 CFR Part 63, Subpart WW |
| 2/23/2022      | Part 70 OP – Administrative Revision  | Include inspection and maintenance under 40 CFR Part 63, Subpart WW |
| 1/30/2023      | Part 70 OP – Minor Revision           | Incorporate a Risk Management Plan                                  |

Table 2. Application Submittals Included in this Action

On November 16, 2021, the permittee applied to renew their Part 70 Operating Permit (OP) with revisions according to Section 12.5.2.1(a)(2) of the Clark County Air Quality Regulations (AQRs). Four additional applications were submitted proposing minor changes to the permit: adding butane blending equipment; incorporating 40 CFR Part 63, Subpart WW, maintenance requirements to

storage tanks subject to 40 CFR Part 60, Subpart Kb, and or 40 CFR Part 63, Subpart BBBBBB; and adding a Risk Management Plan pursuant to 40 CFR Part 68. This renewal incorporates all the actions denoted in Table 2.

The Part 70 ATC and OP administrative revisions dated February 23, 2022, are not being issued as a separate documents, but are incorporated into the Part 70 OP renewal along with the other actions. Under AQR 12.5.2.13(a)(3), administrative permit revisions are allowed for permit revisions that require increased monitoring or reporting by the permittee.

Also, Calnev submitted two prior notifications that addressed temporary alternative operating scenarios with no impact on emissions. These prior notices are not included with this renewal because they were temporary.

Calnev also requested that the diesel-powered fire water pump be renamed to "diesel-powered fire water engine (EU: D02)." This engine consists of two parts: the engine and the pump. The engine can be started without powering the pump and the pump can be replaced without affecting the engine. Therefore, the pump is not a source of emissions.

Additionally, the emissions for the haul roads (EU: E01) were recalculated to incorporate the service roads, which were formerly insignificant activities. This is a methodology change; therefore, those emissions will not be considered during the significance evaluation or for billing. The calculations are included as an attachment.

On January 10 2024, the permittee sent an email asking to include Subpart 68.215(a)(2)(i) and (ii) to the permit to mirror the federal language entirely. This request was made during the EPA public notice period and will be addressed in the permit and added as a comment in the final action report (FAR).

On January 17, 2024, the permittee sent an email notifying DES that the analytical laboratory that usually performs their testing has closed indefinitely. A new analytical laboratory was identified. However, this lab operates equipment that performs EPA Methods TO-3 and TO-15 that are commensurate with the EPA methods that the previous lab conducted. This request was made during the EPA public notice period and will be switched in the permit and added as a comment in the FAR.

# Risk Management Plan

A Risk Management Plan was provided to DAQ per 40 CFR Part 68. The plan is not being incorporated into the permit, but was submitted with the application and will remain on file for reference.

# Butane Blending

The application for the butane blending process was submitted prior to the AQR 12.4 rule update on July 20, 2021. The action is being added to the OP renewal because it was allowed under thencurrent AQR 12.4.3.2(b), minor revision of the OP. The butane blending process entails injecting butane into gasoline during the winter months (blending season: September 16–April 30) to acclimate the vapor pressure of the gasoline. The permittee is proposing to add the following: a bulk butane storage tank, a small sample recovery tank (EU: H18), a minor increase in vehicular traffic, and associated piping and appurtenances for the process. The emission potential increase is attributed to the fugitives from valves and fittings, working and breathing losses from the sampling tank, and the haul road. The 90,000-gallon butane tank is a pressurized horizontal tank with a design internal pressure of 250 psi and a vacuum rating of 15 psi. The tank will be an insignificant activity because it is exempted under 40 CFR Part 60.110b(d)(2), since it is a pressurized tank that does not emit to the atmosphere under normal operation. The annual throughput being requested is 7,400,000 gallons.

The liquid butane will be pumped to a blending skid for direct injection into regular and premium unleaded gasoline lines that feed the site gasoline truck-loading rack. The blending skid controls the injected quantity. A Ruhrpumpen 1150VLG-HX 4-stage hydraulic pump equipped with a 1-hp electric engine pressurizes the butane prior to its injection into the gasoline.

The process also includes a double-walled sample recovery tank (EU: H18) that stores the analyzed samples of the pre-butane blended gasoline. The permittee is requesting a 13,000-gal/yr limit. This tank will thus be included as an emission unit. Table 3 shows the PTE for the blending process.

|                                         | <b>PM</b> 10 | <b>PM</b> <sub>2.5</sub> | NOx | СО | SO <sub>2</sub> | VOC  | Pb  | H <sub>2</sub> S | HAP  |
|-----------------------------------------|--------------|--------------------------|-----|----|-----------------|------|-----|------------------|------|
| EU: H18                                 | 0            | 0                        | 0   | 0  | 0               | 0.34 | 0   | 0                | 0.03 |
| Emissions Increase                      | 0            | 0                        | 0   | 0  | 0               | 0.34 | 0   | 0                | 0.03 |
| Minor NSR<br>Significance<br>Thresholds | 7.5          | 7.5                      | 20  | 35 | 40              | 20   | 0.6 | 5                | N/A  |
| RACT Required                           | No           | No                       | No  | No | No              | No   | No  | No               | N/A  |

Table 3. PTE of Blending Process and Emissions Increase (tons per year)

Lastly, the piping and fittings (EU: B06) number associated with the proposed butane sampling process required updating. The permittee is requesting to revise the VOC and HAP totals for EU: B06. The components in light liquid service for post construction of the butane blending process were tallied.

The HAP values are derivatives of the butane blending application using the maximum hexane concentration. While the HAP emissions for gasoline and ethanol were determined using the weight percentages for gasoline.

The recount of the VOCs and HAP totals are less than what was originally provided in Table 4 of Appendix B in the application submitted on June 17, 2021. A breakdown of the values is in the attachments for reference.

# Rule Applicability Revisited

Previously, rule applicability for 40 CFR Part 60, Subparts K, Ka, and Kb, was determined based on the application date of the units, but was revisited during this action and the units were properly placed according to corresponding rule and installation date, which created the need to address the missing conditions pertaining to 40 CFR 63, Subpart BBBBBB. Once the storage tanks were identified properly, using the installation date and the storage capacity, several EUs fell out of applicability under the Subpart K series of 40 CFR Part 60.

40 CFR Part 63, Subpart BBBBBB, is a National Emission Standard for HAPs (NESHAPs) that applies to area source gasoline distribution bulk terminals, bulk plants, and pipeline facilities, and its control requirements are applicable to gasoline storage tanks at the site. Several conditions were therefore added to this permit to reflect Subpart BBBBBB requirements.

Sources with emission units subject to the requirement of 40 CFR Part 60, Subpart Kb, and/or 40 CFR Part 63, Subpart BBBBBB, have the option of complying with portions of 40 CFR Part 63, Subpart WW. In addition to the format, the permit was updated to reflect which units meet the requirements of 40 CFR Part 60, Subpart Kb, and/or 40 CFR Part 63, Subpart BBBBBB, since those are the units eligible to exercise the option to comply with Subpart WW (EUs: A01–A13, A16, A17, A21, A28, A29, A45–A48, A58–A61, B04, and B05). The attachments contain a list of the identified units.

As a result of this update, the storage tanks may be operated and maintained under the worst case to the extent that the applicable requirement (AR) to which the units are now subject will allow. Depending on fuel type, not all EUs are required to comply with the conditions of the ARs, but the tanks were included in the relevant conditions for flexibility and convenience.

# NAICS code Update

Based on the source's understanding of the NAICS and SIC codes, 493190 and 4226 most appropriately described the Las Vegas Terminal (LVT). The LVT does not own the fuel stored in the tanks as would a wholesale distributor. Wholesale distributors buy products from manufacturers or suppliers in large quantities and sell them at wholesale prices to customers. The tanks serve as storage for their customers, who then have carriers load he fuel onto tanks for distribution to gas stations and other fueling operations.

Table 4 lists the emission units and insignificant activity lists at LVT.

| EU  | Source<br>ID No. | Rating     | Description                                                   | Product Stored    | Optional Stored Products <sup>1</sup>                                                          | SCC      |
|-----|------------------|------------|---------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------|----------|
|     |                  |            | Bulk Petrol                                                   | eum Storage Tanks |                                                                                                |          |
| A01 | Tank 530         | 11,200 bbl | External Floating Roof<br>AST w/Primary and<br>Secondary Seal | Diesel            | Gasoline, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel         | 40400130 |
| A02 | Tank 531         | 12,890 bbl | External Floating Roof<br>AST w/Primary and<br>Secondary Seal | Diesel            | Gasoline, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel         | 40400130 |
| A03 | Tank 532         | 8,080 bbl  | External Floating Roof<br>AST w/Primary and<br>Secondary Seal | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel           | 40400130 |
| A04 | Tank 533         | 11,330 bbl | External Floating Roof<br>AST w/Primary and<br>Secondary Seal | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel           | 40400130 |
| A05 | Tank 534         | 8,080 bbl  | External Floating Roof<br>AST w/Primary and<br>Secondary Seal | Transmix          | Gasoline, Diesel, Biodiesel,<br>Denatured Ethanol, Transmix,<br>Aviation Gasoline and Jet Fuel | 40400130 |
| A06 | Tank 535         | 8,080 bbl  | External Floating Roof<br>AST w/Primary and<br>Secondary Seal | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel           | 40400130 |

# Table 4. Emission Units List

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 10 of 33

| EU  | Source<br>ID No. | Rating     | Description                                                            | Product Stored    | Optional Stored Products <sup>1</sup>                                                | SCC      |
|-----|------------------|------------|------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------|----------|
| A07 | Tank 536         | 17,550 bbl | External Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400130 |
| A08 | Tank 537         | 22,250 bbl | External Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400130 |
| A09 | Tank 538         | 11,330 bbl | External Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400130 |
| A10 | Tank 539         | 11,330 bbl | External Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400130 |
| A11 | Tank 540         | 16,320 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Denatured Ethanol | Gasoline, Diesel, Biodiesel,<br>Transmix, Aviation Gasoline and<br>Jet Fuel          | 40400170 |
| A12 | Tank 541         | 25,100 bbl | Domed External<br>Floating Roof AST<br>w/Primary and<br>Secondary Seal | Biodiesel         | Gasoline, Diesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel  | 40400130 |
| A13 | Tank 524         | 18,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Denatured Ethanol | Gasoline, Diesel, Biodiesel,<br>Transmix, Aviation Gasoline and<br>Jet Fuel          | 40400170 |
| A14 | Tank 542         | 45,000 bbl | Internal Floating Roof<br>AST w/Primary Seal                           | Diesel            | Biodiesel                                                                            | 40400160 |
| A15 | Tank 543         | 35,000 bbl | Internal Floating Roof<br>AST w/Primary Seal                           | Diesel            | Biodiesel                                                                            | 40400160 |
| A16 | Tank 545         | 37,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400170 |
|     |                  |            |                                                                        |                   |                                                                                      |          |
| A17 | Tank 546         | 4,000 bbl  | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400170 |
| A18 | Tank 522         | 50,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Denatured Ethanol |                                                                                      | 40400170 |
| A19 | Tank 525         | 50,000 bbl | Fixed Roof AST                                                         | Diesel            | Biodiesel                                                                            | 40400121 |
| A20 | Tank 526         | 50,000 bbl | Fixed Roof AST                                                         | Diesel            | Biodiesel                                                                            | 40400121 |
| A21 | Tank 547         | 50,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline          | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400170 |
| A22 | Tank 512         | 40,000 bbl | Fixed Roof AST                                                         | Jet Fuel          | Diesel and Biodiesel                                                                 | 40400121 |
| A23 | Tank 510         | 40,000 bbl | External Floating Roof<br>AST w/Primary Seal                           | Jet Fuel          | Diesel and Biodiesel                                                                 | 40400130 |
| A24 | Tank 511         | 4,000 bbl  | External Floating Roof<br>AST w/Primary Seal                           | Jet Fuel          | Diesel and Biodiesel                                                                 | 40400130 |
| A27 | Tank 501         | 10,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Denatured Ethanol |                                                                                      | 40400170 |
| A28 | Tank 523         | 11,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Transmix          | Gasoline, Diesel, Biodiesel,<br>Denatured Ethanol, Aviation<br>Gasoline and Jet Fuel | 40400170 |
| A29 | Tank 544         | 12,890 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Denatured Ethanol | Gasoline, Diesel, Biodiesel,<br>Transmix, Aviation Gasoline and<br>Jet Fuel          | 40400170 |

| EU  | Source<br>ID No.                | Rating     | Description                                                            | Product Stored                           | Optional Stored Products <sup>1</sup>                                                  | SCC      |
|-----|---------------------------------|------------|------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|----------|
| A45 | Tank 548                        | 12,890 bbl | Domed External<br>Floating Roof AST<br>w/Primary and<br>Secondary Seal | Gasoline                                 | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel   | 40400130 |
| A46 | Tank 549                        | 18,000 bbl | Domed External<br>Floating Roof AST<br>w/Primary and<br>Secondary Seal | Gasoline                                 | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel   | 40400130 |
| A47 | Tank 550                        | 20,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline                                 | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel   | 40400170 |
| A48 | Tank 551                        | 10,100 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline                                 | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel   | 40400170 |
| A56 | Tank 513                        | 50,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Jet Fuel                                 | Diesel and Biodiesel                                                                   | 40400170 |
| A57 | Tank 514                        | 50,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Jet Fuel                                 | Diesel and Biodiesel                                                                   | 40400170 |
| A58 | Tank 553                        | 80,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline                                 | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel   | 40400170 |
| A59 | Tank 554                        | 80,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Diesel                                   | Gasoline, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40400170 |
| A60 | Tank 555                        | 80,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline                                 | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel   | 40400170 |
| A61 | Tank 552                        | 40,000 bbl | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Gasoline                                 | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel   | 40400170 |
| B04 | Tank 500                        | 3,000 bbl  | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Transmix                                 | Gasoline, Diesel, Biodiesel,<br>Denatured Ethanol, Aviation<br>Gasoline and Jet Fuel   | 40400170 |
| B05 | Tank 521                        | 5,000 bbl  | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal          | Transmix                                 | Gasoline, Diesel, Biodiesel,<br>Denatured Ethanol, Aviation<br>Gasoline and Jet Fuel   | 40400170 |
|     |                                 |            | Additive                                                               | e Storage Tanks                          |                                                                                        |          |
| A25 | ASA<br>Conductivity<br>Improver | 1.3 bbl    | Fixed Roof AST                                                         | Anti-Static Agent (Jet<br>Fuel Additive) |                                                                                        | 40714697 |
| A26 | Tank 500AIA                     | 252 bbl    | Fixed Roof AST                                                         | Anti-Icing agent (Jet<br>Fuel Additive)  |                                                                                        | 40400170 |
| A30 | Tank 533A                       | 252 bbl    | Fixed Roof AST                                                         | Gasoline Additive                        |                                                                                        | 40174697 |
| A31 | Tank 537A                       | 464 bbl    | Fixed Roof AST                                                         | Gasoline Additive                        |                                                                                        | 40174697 |
| A32 | Tank 541A                       | 380 bbl    | Fixed Roof AST                                                         | Gasoline Additive                        |                                                                                        | 40174697 |
| A33 | Tank 541B                       | 380 bbl    | Fixed Roof AST                                                         | Gasoline Additive                        |                                                                                        | 40174697 |
| A34 | Tank 542D                       | 215 bbl    | Fixed Roof AST                                                         | Gasoline Additive                        |                                                                                        | 40174697 |
| A35 | Tank 542A                       | 143 bbl    | Fixed Roof AST                                                         | Gasoline Additive                        |                                                                                        | 40174697 |
| A36 | Tank 531A                       | 143 bbl    | Fixed Roof AST                                                         | Lubricity (Diesel Fuel<br>Additive)      |                                                                                        | 40174697 |
| A37 | Tank 542C                       | 12 bbl     | Fixed Roof AST                                                         | Red Dye (Diesel Fuel<br>Additive)        |                                                                                        | 40174697 |
| A38 | Tank 537B                       | 447 bbl    | Fixed Roof AST                                                         | Gasoline Additive                        |                                                                                        | 40174697 |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 12 of 33

| EU    | Source<br>ID No.                     | Rating                  | Description                                                                                  | Product Stored Optional Stored Products <sup>1</sup> |                                                                                      | SCC      |
|-------|--------------------------------------|-------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|----------|
| A39   | Tank 531B                            | 119 bbl                 | Fixed Roof AST                                                                               | Gasoline Additive                                    |                                                                                      | 40174697 |
| A49   | Tank 542B                            | 4 bbl                   | Fixed Roof AST                                                                               | Red Dye (Diesel Fuel<br>Additive)                    |                                                                                      | 40174697 |
| A53   | Tank 548B                            | 238 bbl                 | Fixed Roof AST                                                                               | Gasoline Additive                                    |                                                                                      | 40174697 |
| A54   | Tank 548A                            | 238 bbl                 | Fixed Roof AST                                                                               | Gasoline Additive                                    |                                                                                      | 40174697 |
| H10   | Tank 500B                            | 10,000 gallons          | Fixed Roof Vertical<br>AST                                                                   | Anti-Icing Agent (Jet<br>Fuel Additive)              |                                                                                      | 40174697 |
| H14   | ASA Tote                             | 350 gallons             | Fixed Roof<br>Rectangular AST                                                                | Anti-static Agent (Jet<br>Fuel Additive)             |                                                                                      | 40174697 |
| H15   | CI Tote                              | 350 gallons             | Fixed Roof<br>Rectangular AST                                                                | Corrosion Inhibitor<br>(Jet Fuel Additive)           |                                                                                      | 40174697 |
| H16   | Lane 7 Red<br>Dye Tote               | 350 gallons             | Fixed Roof<br>Rectangular AST                                                                | Red Dye (Diesel Fuel<br>Additive)                    |                                                                                      | 40174697 |
| H17   | Lane 12 Red<br>Dye Tote              | 40,000 bbl              | Fixed Roof<br>Rectangular AST                                                                | Gasoline                                             |                                                                                      |          |
|       |                                      |                         | Loa                                                                                          | ding Racks                                           |                                                                                      |          |
| B01   | Loading<br>Racks                     | 1,486,000,000<br>gal/yr | 15 Loading Lanes                                                                             | All Petroleum Products<br>through Loading Racks      | Stored On-site are Dispensed                                                         | 40400150 |
|       | •                                    |                         | Fue                                                                                          | Unloading                                            |                                                                                      |          |
| B01A  | B-100                                | 147,168,000<br>gal/yr   | Biodiesel Offloading<br>Rack                                                                 |                                                      |                                                                                      | 40400150 |
| H09   | Ethanol                              | 76,104,000<br>gal/year  | Ethanol unloading system                                                                     |                                                      |                                                                                      | 40700810 |
| Vapor | Recovery Units                       |                         |                                                                                              |                                                      |                                                                                      |          |
| B02   | John Zink<br>VRU                     |                         | Vapor control unit;<br>loading lanes                                                         |                                                      |                                                                                      | 40400153 |
| B10   | Flare<br>Processing                  |                         | Vapor control unit for<br>loading lanes<br>(includes saturator<br>and vapor holding<br>tank) |                                                      |                                                                                      | 40400153 |
| SR04  | SVE and<br>GW<br>Treatment<br>System |                         | Soil Vapor Extraction<br>and Groundwater<br>Treatment System<br>(includes control<br>units)  |                                                      |                                                                                      | 50410312 |
|       |                                      |                         | Undergrou                                                                                    | und Storage Tanks                                    |                                                                                      |          |
| H02   | Mainline<br>Sump                     | 1,000 gallons           | Mainline Sump UST                                                                            | Gasoline                                             | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40174697 |
| H03   | Rack Sump                            | 3,000 gallons           | Rack Sump UST                                                                                | Gasoline                                             | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40174697 |
| H04   | Mainline<br>Sump                     | 4,200 gallons           | New Mainline Sump<br>UST                                                                     | Gasoline                                             | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40174697 |
| H06   | Nellis Sump                          | 2,000 gallons           | Nellis Delivery<br>System Sump, UST                                                          | Jet Fuel                                             |                                                                                      | 40174697 |
| H07   | Rack Sump                            | 1,000 gallons           | Rack 6 Sump, UST                                                                             | Diesel                                               | Biodiesel                                                                            | 40174697 |
| H08   | QC Sump                              | 100 gallons             | Quality Control Lab<br>Sump UST                                                              | Gasoline                                             | Diesel, Biodiesel, Denatured<br>Ethanol, Transmix, Aviation<br>Gasoline and Jet Fuel | 40174697 |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 13 of 33

| EU                           | Source<br>ID No.           | Rating                            | Description                                                  | Product Stored                                      | Optiona         | SCC               |          |  |  |  |
|------------------------------|----------------------------|-----------------------------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------|-------------------|----------|--|--|--|
| Miscellaneous Tanks          |                            |                                   |                                                              |                                                     |                 |                   |          |  |  |  |
| D01                          | Tank DG                    | 250 gallons                       | Fixed Roof AST                                               | Diesel                                              | Biodiesel       |                   | 40400121 |  |  |  |
| H11                          | OWS Tank                   |                                   | Oil-water separator tank                                     | Oil and Water                                       |                 |                   | 30600508 |  |  |  |
| H12                          | OST-100-<br>DW             | 1,000 gallons                     | Fixed Roof Horizontal<br>AST w/Dual Wall                     | Gasoline                                            |                 |                   | 40400313 |  |  |  |
| H18 <sup>N</sup>             | Sample<br>Recovery<br>Tank | 125 gallons                       | Vertical Fixed Roof<br>Sample Recovery<br>Tank               | Pre-butane Blended<br>Gasoline                      |                 |                   | 40400108 |  |  |  |
| Miscellaneous Emission Units |                            |                                   |                                                              |                                                     |                 |                   |          |  |  |  |
| B06                          | Piping and<br>Fittings     |                                   | Misc. Losses/Leaks<br>from Valves, Flanges,<br>Pumps and VCU |                                                     |                 |                   | 40400151 |  |  |  |
| E01                          | Haul Road                  | 0.5 mi RT                         | Paved Haul Road                                              |                                                     |                 |                   | 30502504 |  |  |  |
| H05                          | Cooling<br>Tower           | 220 gpm                           |                                                              | Baltimore Aircoil; M/N: F2841KE; S/N: U013422001MAD |                 | /N: U013422001MAD | 38500101 |  |  |  |
|                              |                            |                                   | Internal Co                                                  | mbustion Engines                                    |                 |                   |          |  |  |  |
| EU                           | Rating                     | Description                       | Manufacturer                                                 |                                                     | Model<br>Number | Serial Number     | SCC      |  |  |  |
|                              |                            | Air Compressor                    | Ingersoll Rand                                               |                                                     |                 |                   |          |  |  |  |
| B11                          | 48 hp                      | Diesel Engine;<br>DOM: 2000       | John Deere                                                   |                                                     | P185WJD         | 315261UHK231      | 20300201 |  |  |  |
| D02                          | 208 hp                     | Fire Water<br>Engine <sup>2</sup> | Peerless                                                     |                                                     | 8AFF170         | 667235            | 20200204 |  |  |  |
| D02                          | 208 hp                     | Diesel Engine;<br>DOM 1990        | Cummins                                                      |                                                     | 6BTA5F1         | 45175100          | 20300201 |  |  |  |

Note: N = new emission unit.

<sup>1</sup>The PTE and rule applicability is based on the worst-case configuration.

<sup>2</sup>The fire water engine (aka fire pump) is separate from the engine and may be replaced independently; and therefore, was removed from the permit. It's being retained in the TSD for reference.

The units in Table 5 are present at this source, but are insignificant activities pursuant to AQR 12.5.2.5. The emissions from these units or activities, when added to the PTE of the source, will not make the source major for any additional pollutant.

Table 5. Summary of Insignificant Activities

| Equipment                     | Description                                                         |
|-------------------------------|---------------------------------------------------------------------|
| Tank 476                      | Wastewater                                                          |
| Tank 479                      | Free Product Extracted from Wells of the Groundwater System         |
| Tank 535-A                    | Diesel Lubricity Additive Storage Tank, 10,000 gallons, 0.026 psia  |
| Underground Storage Tanks (2) | Wastewater Runoff Collection                                        |
| B-100 Prover                  | Portable Prover for B-100 fuel                                      |
| Nellis Line Prover            | Horizontal Loop Piping Circuit                                      |
| Main Line Prover              | Horizontal Loop Piping Circuit                                      |
| Water Surge Tank              | Wastewater Treatment (Oil and Water Separator)                      |
| Parts Washer                  | R&D Fountain Industries Company; 3.5-gal Tub; 35" W x 24" L x 17" D |
| Evaporation Tank/Pond         | Wastewater Evaporation                                              |

| Equipment                         | Description                                           |
|-----------------------------------|-------------------------------------------------------|
| Butane Blending Tank <sup>N</sup> | 90,000-gal horizontal pressurized tank storing butane |
| N=new equipment.                  |                                                       |

# **EMISSIONS INFORMATION**

#### Calculation of Emissions

The TANKS program (version 4.09d) was used to estimate annual VOC emissions from the fuel storage tanks. Since there are no changes to the existing storage tanks, the same emissions estimates have been retained for this renewal application.

The emission potential for the two proposed tanks were hand-calculated using AP-42 values and tank total, standing, and working losses. Minimal emissions will result from the proposed 125-gallon sampling tank.

A slight increase in particulates will result from existing haul road emissions. Fugitive emissions from piping and piping components connecting the butane tank into existing ducting were derived using the document "Protocol for Equipment Leak Emission Estimates" (EPA-453/R-95-017, Tables 2-2 and 2-3).

Calnev is a major source of VOCs and a minor source of PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>x</sub>, CO, SO<sub>2</sub>, and HAP emissions. Table 6 shows the source-wide PTE.

#### Table 6. Source-wide PTE (tons per year)

| Pollutant    | <b>PM</b> 10 | PM2.5 | NOx  | СО   | SO <sub>2</sub> | VOC    | HAP  |
|--------------|--------------|-------|------|------|-----------------|--------|------|
| Proposed PTE | 8.40         | 1.42  | 3.26 | 2.55 | 0.18            | 188.00 | 9.30 |

# **OPERATIONAL LIMITATIONS**

Calnev shall limit the total annual tank throughput of all the tanks in Table 7 to 4,504,505,338 gallons (107,250,172 barrels) in any consecutive 12-month period. Table 7 also denotes the throughput limits for the tanks individually.

Table 7. Source-wide PTE (tons per year)

| EU                 | Annual Throughput<br>(gallons) | EU  | Annual Throughput<br>(gallons) |  |  |  |  |  |  |  |  |
|--------------------|--------------------------------|-----|--------------------------------|--|--|--|--|--|--|--|--|
| Bulk Storage Tanks |                                |     |                                |  |  |  |  |  |  |  |  |
| A01                | 28,560,000                     | A27 | 9,540,000                      |  |  |  |  |  |  |  |  |
| A02                | 32,460,000                     | A28 | 23,580,000                     |  |  |  |  |  |  |  |  |
| A03                | 20,340,000                     | A29 | 27,720,000                     |  |  |  |  |  |  |  |  |
| A04                | 28,560,000                     | A45 | 32,460,000                     |  |  |  |  |  |  |  |  |
| A05                | 20,340,000                     | A46 | 32,460,000                     |  |  |  |  |  |  |  |  |
| A06                | 20,340,000                     | A47 | 70,000,000                     |  |  |  |  |  |  |  |  |
| A07                | 44,220,000                     | A48 | 50,400,000                     |  |  |  |  |  |  |  |  |
| A08                | 90,000,000                     | A56 | 189,000,000                    |  |  |  |  |  |  |  |  |

| EU  | Annual Throughput<br>(gallons) | EU            | Annual Throughput<br>(gallons) |
|-----|--------------------------------|---------------|--------------------------------|
| A09 | 28,560,000                     | A57           | 189,000,000                    |
| A10 | 50,000,000                     | A58           | 302,400,000                    |
| A11 | 137,000,000                    | A59           | 604,800,000                    |
| A12 | 864,000,000                    | A60           | 604,800,000                    |
| A13 | 50,760,000                     | A61           | 126,000,000                    |
| A14 | 118,500,000                    | B04           | 7,560,000                      |
| A15 | 114,660,000                    | B05           | 12,720,000                     |
| A16 | 88,200,000                     | D01           | 25,000                         |
| A17 | 100,800,000                    | H02           | 302,400                        |
| A18 | 9,000,000                      | H03           | 806,400                        |
| A19 | 350,000,000                    | H04           | 100,800                        |
| A20 | 220,500,000                    | H06           | 75,600                         |
| A21 | 100,800,000                    | H07           | 36,000                         |
| A22 | 126,000,000                    | H08           | 7,200                          |
| A23 | 100,800,000                    | H11           | 15,768,000                     |
| A24 | 100,800,000                    | H12           | 365,000                        |
|     | Fuel A                         | dditive Tanks |                                |
| A25 | 5,040                          | A38           | 95,949                         |
| A26 | 95,949                         | A39           | 44,100                         |
| A30 | 95,949                         | A49           | 5,040                          |
| A31 | 95,949                         | A53           | 57,519                         |
| A32 | 148,050                        | A54           | 95,949                         |
| A33 | 148,050                        | H10           | 132,000                        |
| A34 | 81,207                         | H14           | 390                            |
| A35 | 79,286                         | H15           | 3,300                          |
| A36 | 55,661                         | H16           | 6,150                          |
| A37 | 5,040                          | H17           | 6,150                          |
|     |                                | H18           | 13,000                         |

The permittee is requesting that the proposed sample recovery tank's (EU: H18) limit will be 13,000 gal/yr. The 90,000-gallon butane tank's annual throughput will be 7.4 million gallons. This is technically not a limit because the tank is insignificant.

### Loading Racks

The total throughput for the loading racks (EU: B01), including all petroleum products, will continue to be limited to 1,485,956,934 gallons (35,379,927 barrels) in any consecutive 12-month period.

## Offloading Rack

The permittee shall maintain the total throughput limit of the B-100 offloading rack (EU: B01A) to 147,168,000 gallons in any consecutive 12-month period.

### Auxiliary Flare

The flare's hours of operation will remain limited to 438 hours in any consecutive 12-month period (EU: B10).

## Ethanol Unloading System

The permittee shall retain the limit on the amount of ethanol unloaded through the ethanol loading system (EU: H09) to 76,104,000 gallons in any consecutive 12-month period.

## Haul Road

The haul road methodology for calculating emissions has changed to include unpaved and paved roads. The source used DAQ default emission factors. The emission calculations have been included as an attachment.

### **Engines**

The diesel-powered air compressor (EU: B11) will continue to be limited to 100 hours per year.

The permittee shall limit the operation of the diesel-powered fire water engine (EU: D02) for testing and maintenance purposes to 100 hours per year, including an allowance for up to 50 hours annually for nonemergency situations.

# **CONTROL TECHNOLOGY**

# 40 CFR Part 63, Subpart BBBBBB

Under 40 CFR 63.11100 "Gasoline storage tank or vessel," the proposed sample butane blending tank does not meet this definition. Therefore, the sample butane blending tank is not subject to the requirements of 40 CFR Part 63, Subpart BBBBBB.

40 CFR Part 63, Subpart BBBBBB, identifies controls specific to storage tanks. These can vary depending on the capacity of each storage tank. The control requirements for each storage tank have been identified and spelled out in the permit (EUs: A01–A13, A16, A17, A21, A28, A29, A45–A48, A58–A61, B04, and B05). Additionally, any specifics relative to the vapor collection system were added for clarification and rule applicability.

### 40 CFR Part 63, Subpart WW

40 CFR Part 63, Subpart WW, specifies the control and maintenance for the eligible units (EUs: A16, A17, A21, A58–A61, B04, and B05) according to the requirements spelled out in 40 CFR Part 60, Subpart Kb, and 40 CFR Part 63, Subpart BBBBB. Conditions detailing controls based on capacity, as found in the regulation, have been added to the permit.

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 17 of 33

# **APPLICABLE REQUIREMENTS**

### 40 CFR Part 60—New Source Performance Standards

#### 40 CFR Part 60, Subpart A

The source shall be subject to the requirements in the subsections of Subpart A—General Provisions unless other requirements are specified from another subpart of 40 CFR Part 60.

#### 40 CFR Part 60, Subpart K

Each vessel that stores petroleum liquids with a capacity between 40,000 and 65,000 gallons and that was constructed, reconstructed, or modified after June 11, 1973, but before May 19, 1978 or after June 11, 1973, but before May 19, 1978 and with a capacity greater than 65,000 gallons shall meet the standards of performance for Subpart K. "Petroleum liquids" means petroleum, condensate, and any finished or intermediate products manufactured in a petroleum refinery, but does not mean Nos. 2 through 6 fuel oils as specified in ASTM D396–78, 89, 90, 92, 96, or 98; gas turbine fuel oils Nos. 2–GT through 4–GT as specified in ASTM D2880–78 or 96; or diesel fuel oils Nos. 2–D and 4–D as specified in ASTM D975–78, 96, or 98a. There are no units at the facility that meet these criteria.

### 40 CFR Part 60, Subpart Ka

The source has one storage vessel (EU: A29) that holds petroleum liquids that was constructed, reconstructed, or modified in 1978, before July 23, 1984. The actual month of construction is not known, so this unit is being regulated based on the worst case, which puts it under Subpart Ka.

#### 40 CFR Part 60, Subpart Kb

The permittee operates storage vessels that were constructed, reconstructed, or modified after July 23, 1984, and contain volatile organic liquids (VOLs). VOLs are any organic liquid that can emit VOCs into the atmosphere, including petroleum liquids. (EUs: A16, A17, A21, A58–A61, B04, and B05).

#### 40 CFR Part 60, Subpart XX

The provisions of Subpart XX apply to the loading racks (EU: B01) that deliver liquid product into gasoline tank trucks at this facility.

#### 40 CFR Part 63—National Emissions Standards for Hazardous Air Pollutants

#### 40 CFR Part 63, Subpart A

Subpart A contains the general provisions for all the subparts contained in Part 63 applicable to the source, unless provisions are specified otherwise in another subpart. These provisions include, at a minimum, definitions, units and abbreviations, prohibited activities and circumvention,

preconstruction review and notification requirements, compliance with standards and maintenance requirements, performance testing requirements, monitoring requirements, notification requirements, recordkeeping and reporting requirements, and control device and work practice requirements.

# 40 CFR Part 63, Subpart BBBBBB

Subpart BBBBBB applies to gasoline distribution bulk terminals, bulk plants, and pipeline facilities. Because the source matches this description, it is subject to the emission limits, management practices, and compliance demonstration requirements in this subpart.

Under Part 63.11087(f), gasoline storage tanks subject to and complying with the control requirements of 40 CFR Part 60, Subpart Kb, are deemed to be in compliance with Subpart BBBBBB.

Pursuant to Table 1 in Subpart BBBBBB, the source proposes to use the compliance methodology under 40 CFR Part 63, Subpart WW, as long has the facility meets the requirements detailed in Subpart BBBBBB.

# 40 CFR Part 63, Subpart CCCCCC

Subpart CCCCCC establishes emission limitations for HAPs emitted from storage tanks at gasoline dispensing facilities. Calnev is not an area source that meets the definition of gasoline dispensing under Subpart CCCCCC, so it is not subject to these provisions.

# 40 CFR Part 63, Subpart R

The provisions of Subpart R apply to all bulk gasoline terminals except those that are not major sources or located within a contiguous area and under common control of a major source of HAPs, as defined in 40 CFR Part 63.2. Since Calnev is not a major source of HAPs, Subpart R does not apply to this facility.

# 40 CFR Part 63, Subpart WW

40 CFR Part 60, Subpart Kb, allows for owners or operators to comply with Subpart WW to satisfy the requirements of 40 CFR Parts 60.112b–60.117b for storage vessels containing VOLs that meet certain design capacity and true vapor pressure requirements. The permittee has opted to use this alternative compliance method. The permit was revisited to identify the tanks that are subject to the provisions of Subpart Kb and therefore qualify for this alternative compliance methodology (EUs: A16, A17, A21, A58–A61, B04, and B05). Additionally, under Table 1 in Subpart BBBBBB, if the storage tank containing gasoline meets the control standards in Subpart Kb, then Subpart WW may be used to satisfy the compliance requirements in Subpart BBBBBB.

# 40 CFR Part 63, Subpart ZZZZ

Area sources of HAP emissions that operate a stationary reciprocating internal combustion engine (RICE) are subject to the provisions of this subpart. The permittee operates a diesel air compressor

and a diesel fire water engine (EUs: B11 and D02, respectively), both of which were manufactured prior to 2006, so some requirements of Subpart ZZZZ apply.

# 40 CFR Part 68, Subpart G—Chemical Accident Provisions

Part 68 contains a list of regulated substances and thresholds concerning the prevention of accidental releases. The introduction of the butane blending process activated this requirement. As a result, the permittee is required to prepare and maintain a Risk Management Plan for the U.S. Environmental Protection Agency and provide a copy to the regulating air agency (in this case, DAQ).

# MONITORING

40 CFR Part 63, Subpart BBBBBB, requires monthly leak inspections for all equipment in gasoline service using sight, sound, or smell per 40 CFR Part 63.11089(a) & (b), along with maintaining a log book.

The inspection routine and frequency for storage tanks with internal and external floating roofs requirements under 40 CFR Part 63.1063(c) & (d) (40 CFR Part 63, Subpart WW), as an alternative compliance method were added to the permit per Subpart BBBBBB and 40 CFR Part 60, Subpart Kb, (EUs: A01-A13, A16, A17, A21, A28, A29, A45–A48, A58–A61, B04, and B05).

The visual emissions observations requirements were updated to reflect current DAQ policy (Section 4.1 of the OP).

The general conditions pertaining to AQR 4.2 were added to the permit as standard requirements. This is customary for all permits issued by DAQ.

Lastly, by including unpaved road emissions, the monitoring requirements were revised to include monitoring vehicle miles traveled and road length for recordkeeping and reporting requirements.

# **PERFORMANCE TESTING**

There are no changes to the existing testing requirements in the Part 70 OP. Neither the blending process nor the associated tanks are subject to performance testing.

Standard language has been updated to the current format, which specifies the process for receiving approval for use of alternative test methods. Also, a condition was added stating that the source may provide necessary holes or ducts in stacks for sampling and testing. Lastly, a condition was added to state that the Control Officer has the authority to request and observe additional tests if excess emissions are believed to occur.

All existing testing requirements for the loading racks and the soil vapor extraction and groundwater treatment system are still applicable for this permitting action.

# **RECORDKEEPING AND REPORTING**

The units being serviced under the 40 CFR Part 63, Subpart WW, alternative compliance demonstration shall comply with the recordkeeping and reporting requirements detailed in 40 CFR Part 60.110b(e).

Conditions pertaining to the recordkeeping and reporting requirements for 40 CFR Part 63, Subpart BBBBBB, have been incorporated into the permit. Per Subpart BBBBBB, Notices of Compliance Status are required in the semiannual compliance reports.

Recordkeeping for CEMS audit results, accuracy checks, corrective actions, etc. as applicable are required by 40 CFR 60, Appendix F and the CEMS QA Plan. Also, the permittee shall maintain the information required by the CEMS monitoring plan under 40 CFR 75, Subpart F, and the OP's monitoring requirements.

The recordkeeping conditions for non-vapor-tightness documentation in Subpart BBBBBB have been incorporated into the permit as required.

Recordkeeping provisions for storage tank maintenance, malfunctions, and repairs, as prescribed by Subpart BBBBBB, have been incorporated into the permit.

Subpart BBBBBB also requires that records on the loading racks be kept for each loading of a gasoline cargo tank for which vapor tightness documentation has not been previously obtained by the facility.

The proposed sample blending tank (EU: H18) will require the same recordkeeping and reporting on monthly throughput as similar units at the facility.

# **PUBLIC PARTICIPATION**

The public participation required for OP renewal by AQR 12.5.2.17 shall consist of a 30-day notice on the department website. To facilitate public outreach consistent with environmental justice requirements, DAQ shall publish the notice in the *Las Vegas Review-Journal*.

# **INCREMENT ANALYSIS**

An increment analysis is not required, since the new blending process does not emit a pollutant that triggers a minor source baseline date ( $NO_x$  and  $SO_2$ ) for Hydrographic Area 212 (the Las Vegas Valley). The last increment analysis completed on this source was for the Part 70 OP renewal issued on June 1, 2017. Modeling will be conducted for this renewal to ensure the source is current.

# **ENVIRONEMENTAL JUSTICE**

Securing environmental justice and equity for all environmentally overburdened communities is a high priority for EPA. To advance environmental justice and equity through permitting actions under the Clean Air Act (CAA), the office of Air and Radiation is providing resources and recommendations to the EPA regions regarding approaches for addressing environmental justice and advancing environmental equity. EPA regional air permitting staff are encouraged to immediately apply the eight principles and associated practices in issuing federal CAA permit decisions. Regions are equally encouraged to work collaboratively and proactively with state, tribal, and local partners to facilitate their consideration and application of these same principles in their air permitting actions where appropriate to protect human health and the environment for all affected individuals, including those who live in communities with environmental justice and equity concerns.

An environmental justice analysis accomplishes two important policy objectives (1) it addresses the principle of fair treatment by further evaluating adverse and disproportionate impacts and identifying ways to prevent or mitigate such impacts; and (2) it addresses the principle of meaningful involvement by fostering enhanced community engagement in the permitting decision. Each analysis is conducted on a case-by-case basis and to what degree depends on the circumstances of any permit decision.

Calnev is located in northeast Las Vegas. The nearest residences are less than 0.6 miles from the source. A cursory analysis of the EPA's Environmental Justice Screening and Mapping Tool (EJScreen) and using 3-mile radius shows that this permitting action will not have an adverse or disparate effect on an underserved population when compared to the general population of Las Vegas. The proposed modification results in less than a ton of total emissions and should have negligible impacts on nearby residents. Therefore, an extensive assessment wasn't performed.

# ATTACHMENTS

| Emission Source                        | <b>PM</b> 10 | PM <sub>2.5</sub> | NOx  | со   | SO <sub>2</sub> | VOC    | HAP  |  |
|----------------------------------------|--------------|-------------------|------|------|-----------------|--------|------|--|
| Current Potential to Emit              | 6.80         | 0.12              | 3.26 | 2.55 | 0.18            | 187.41 | 9.23 |  |
| Fugitives Emissions (add'l components) | 0            | 0                 | 0    | 0    | 0               | 0.28   | 0.03 |  |
| Sample Recovery Tank<br>Emissions      | 0            | 0                 | 0    | 0    | 0               | 0.06   | 0    |  |
| Haul Roads (revised)                   | 7.24         | 1.20              | 0    | 0    | 0               | 0      | 0    |  |
| Proposed Potential to Emit             | 8.40         | 1.42              | 3.26 | 2.55 | 0.18            | 188.00 | 9.30 |  |
| Change in Emissions                    | 1.60         | 1.30              | 0.00 | 0.00 | 0.00            | 0.59   | 0.07 |  |

Blending Process and Haul Road Emissions Summary and Calculations (tpy)

| New Equipment                | Rating    | Annual Throughput      | Description                  | Product Stored               |  |  |  |  |  |
|------------------------------|-----------|------------------------|------------------------------|------------------------------|--|--|--|--|--|
| Butane Tank 90,000 ga        |           | 7,400,000 gal          | Horizontal pressurized AST   | Butane                       |  |  |  |  |  |
| Sample Recovery Tank 125 gal |           | 13,000 gal             | Double-walled AST            | Blended Gasoline             |  |  |  |  |  |
|                              |           |                        |                              |                              |  |  |  |  |  |
| Affected Existing Emission   | n Units   |                        |                              |                              |  |  |  |  |  |
| Fugitive Components          |           |                        | Pining and nining components | Putano and Plandad Gasolina  |  |  |  |  |  |
| (EU B06)                     |           |                        | riping and piping components | Butarie and biended Gasoline |  |  |  |  |  |
| Haul Road                    | 0.5 mi PT | 482.5 \/MT / 025 Trips | Payed and Uppayed Haul Road  |                              |  |  |  |  |  |
| (EU E01)                     | 0.0 mi Ki | 402.0 VIVI 7 820 Trips | raved and onpaved hadritoad  |                              |  |  |  |  |  |

# Sample Recovery Tank (EU: H18) — Vertical Fixed Roof Tank Calculations

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Tank Emission Calculation Summary                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol                                                                                                          | Equation                                                                                                                                                                                                        | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AP-42 Ch.7 Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT                                                                                                              | LT = LS + LW                                                                                                                                                                                                    | 112.4799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equation 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Standing Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS                                                                                                              | LS • ND"W"WV"KE"KS                                                                                                                                                                                              | 68.7328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equation 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Working Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LW                                                                                                              | LW • VO'KN'KP'WV'KB                                                                                                                                                                                             | 43.7471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equation 1-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Main Parameters in the Standing and Working Loss Equations                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol                                                                                                          | Equation                                                                                                                                                                                                        | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AP-42 Ch.7 Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                              |                                                                                                                                                                                                                 | 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vapor Space Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vv.                                                                                                             | VV = (pl()*D*2H)*HVO                                                                                                                                                                                            | 8.9743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>#3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equation 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stock Vapor Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WV                                                                                                              | WV = (MV*PVA)/(R*TV)                                                                                                                                                                                            | 0.0933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Equation 1-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vapor Space Expansion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KE                                                                                                              | KE • DELTATWITA + (DELTAPV - DELTAPB)(PA - PVA)                                                                                                                                                                 | 0.3788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equation 1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vented Vapor Saturation Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KS                                                                                                              | KS = (1 + 0.053*PVA*HVO)*-1                                                                                                                                                                                     | 0.5940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equation 1-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Net Working Loss Throughput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VQ                                                                                                              | VQ = 5.814 Q                                                                                                                                                                                                    | 1737.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>#3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equation 1-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Working Loss Turnover (Saturation) Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KIN                                                                                                             | KN = (180 + NV(6'N) for N ≥ 36lyr, KN = 1 for N <= 36lyr                                                                                                                                                        | 0.269967749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equation 1-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Working Loss Product Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KP                                                                                                              | KP = 0.75 for crude cils, or 1 for all other organic liquids                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equation 1-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vent Setting Correction Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KB                                                                                                              | KB = 1 for vent setting range up to +/- 0.03 psig                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equation 1-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Tank Operating Parameters                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol                                                                                                          | Equation                                                                                                                                                                                                        | Velue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AP-42 Ch.7 Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Net Throughput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q                                                                                                               |                                                                                                                                                                                                                 | 309.5238095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bbl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of Turnovers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                                                                                               | N = SIGMAHOU(HLX - HLN)                                                                                                                                                                                         | 290.4413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equation 1-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sum of Increases in Liquid Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIGMAHQI                                                                                                        | SIGMAHOI = (5.614*0)/(pi)*D*24)                                                                                                                                                                                 | 290.4413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŧ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Equation 1-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maximum Liquid Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HLX                                                                                                             | HLX = HS - 1                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equation 1-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Liquid Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HLN                                                                                                             | HLN = 1                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŧ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Equation 1-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Tank Physical Size Parameters                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol                                                                                                          | ligation                                                                                                                                                                                                        | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AP-42 Ch.7 Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tank Equivalent Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D                                                                                                               |                                                                                                                                                                                                                 | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Vapor Space Outsige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HVO                                                                                                             | HVO = HS - HL + HRO                                                                                                                                                                                             | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equation 1-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tank Shell Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HS                                                                                                              |                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I have a black of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | and the second second                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Western Annual State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HL                                                                                                              | HL = 0.5"HS                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VDICH ARBUTICSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Roof Outage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HL<br>HRO                                                                                                       | HL = 0.5°HS<br>HRO = (1/3°HR                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Equation 1-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Roof Outage<br>Tank Roof Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HL<br>HRO<br>HR                                                                                                 | HL = 0.5"HS<br>HRO = (1/3)"HR<br>HR = 51"RS                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equation 1-17<br>Equation 1-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Roof Outage<br>Tank Roof Height<br>Tank Crow Roof Sloce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HL<br>HRO<br>HR<br>SR                                                                                           | HL = 0.5°HS<br>HRO = (1.3)°HR<br>HR = SR*RS                                                                                                                                                                     | 1.5<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.<br>1.<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Equation 1-17<br>Equation 1-18<br>Default = 0.0625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Loud reign<br>Roof Outget<br>Tank Roof Height<br>Tank Core Roof Stope<br>Tank Shell Padus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HL<br>HRO<br>HR<br>SR<br>RS                                                                                     | HL = 0.27HS<br>HR = (1/37HR<br>HR = SR*RS                                                                                                                                                                       | 1.5<br>0.0000<br>0.0000<br>0.0000<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Typical Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cadua Hegini<br>Raof Outage<br>Tank Roof Height<br>Tank Cone Roof Slope<br>Tank Shell Radua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HL<br>HRO<br>HR<br>SR<br>RS                                                                                     | HL = 0.27HS<br>HRO = (127HR<br>HRO = SirkS                                                                                                                                                                      | 1.5<br>0.0000<br>0.0000<br>0.0000<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Typical Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ledus regin<br>Roof Cutage<br>Tank Roof Height<br>Tank Core Noof Sope<br>Tank Shell Redus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HL<br>HRO<br>HR<br>SR<br>RS                                                                                     | HL = 0.27HS<br>HR = (1.37HR<br>HR = SR*RS<br>Tank Concluon Characteristics                                                                                                                                      | 1.5<br>0.0000<br>0.0000<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Typical Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Adult Hight<br>Roof Outge<br>Tank Roof Height<br>Tank Core Roof Stope<br>Tank Shell Radus<br>Structure<br>Tank Roof Surface Solar Absorptance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HL<br>HRO<br>HR<br>SR<br>RS<br>ALPHAR                                                                           | HL = 0.27HS<br>HR = 0.127HR<br>HR = SRTRS<br>Tank Condition Characteristics                                                                                                                                     | 1.5<br>0.0000<br>0.0000<br>1.38<br>0.000<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Typical Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0625<br>March 2007 March 2007<br>Table 7.1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ledus regin<br>Roof Dulage<br>Tank Roof Height<br>Tank Shell Radus<br>Fank Shell Radus<br>Fank Shell Radus<br>Tank Roof Surface Solar Absorptance<br>Tank Roof Surface Solar Absorptance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HL<br>HRO<br>HR<br>SR<br>RS<br>ALPHAR<br>ALPHAR                                                                 | HL = 0.0748<br>HR = (1.0714R<br>HR = SR RS<br>Trak Osasida Gare scriftige<br>Reputies                                                                                                                           | 1.5<br>0.0000<br>0.0000<br>1.38<br>0.000<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Typice Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0525<br>AM-22 CR7 Instruction<br>Table 7.1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ledus regin<br>Roof Outge<br>Tank Roof Height<br>Tank Cone Roof Sope<br>Tank Shell Radus<br>Encoder<br>Tank Roof Surface Solar Absorptance<br>Tank Roof Surface Solar Absorptance<br>Beather Vert Pressure Selano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HL<br>HRO<br>HR<br>SR<br>RS<br>BEE<br>ALPHAR<br>ALPHAS<br>PBP                                                   | HL = 0.27115<br>HR = (1.271 HR<br>HR = SR RS<br>Tank Condition China Strategics<br>Results                                                                                                                      | 1.5<br>0.0000<br>0.0000<br>0.0000<br>1.38<br>0.25<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t<br>t<br>t<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ripcia Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0625<br>NUE F21-26 EXTINCTION<br>Table 7.1-6<br>Table 7.1-6<br>Table 7.1-6<br>Default = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ledus regin<br>Roof Outge<br>Roof Dutge<br>Tank Roof Height<br>Tank Shell Radus<br>Provident<br>Tank Shell Radus<br>Difference<br>Tank Shell Surface Solar Absorptance<br>Tank Shell Surface Solar Absorptance<br>Breather Vert Pressure Setting<br>Breather Vert Vecuum Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HL<br>HRO<br>HR<br>SR<br>R5<br>ALPHAR<br>ALPHAR<br>ALPHAS<br>PBP<br>PBV                                         | HL = 0.07HS<br>HR = (107HR<br>HR = SR RS<br>Trait Condition Characteristics<br>(Aprildo)                                                                                                                        | 1.5<br>0.0000<br>0.0000<br>1.38<br>0.25<br>0.25<br>0.25<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e<br>e<br>e<br>unip<br>pelo<br>pelo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rippice Assumption<br>Equation 1-17<br>Equation 1-18<br>Debut = 0.0525<br>Table 7.1-6<br>Table 7.1-6<br>Debut = 0.03<br>Debut = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Leuis regin<br>Roof Oxings<br>Tank Roof Height<br>Tank Cone Roof Sope<br>Tank Shell Radius<br>Control of<br>Tank Roof Surface Solar Absorptance<br>Tank Shell Surface Solar Absorptance<br>Breather Vert Pressure Setting<br>Breather Vert Pressure Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HL<br>HRD<br>HR<br>SR<br>RS<br>SILT<br>ALPHAR<br>ALPHAS<br>PBP<br>PBV                                           | HL = 0.27145<br>HR = (15714R<br>HR = SR R5<br>Tank Condition Characteristics<br>Equation                                                                                                                        | 1.5<br>0.0000<br>0.0000<br>1.38<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt<br>nt<br>nt<br>paig<br>paig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rypcis Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0525<br>Table 7.1-6<br>Table 7.1-6<br>Default = 0.03<br>Default = -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Labol Weght<br>Tank Roof Height<br>Tank Cone Roof Stope<br>Tank Shell Radius<br>Part and Shell Radius<br>Tank Shell Surface Solar Absorptance<br>Tank Shell Surface Solar Absorptance<br>Breather Vert Pressure Setting<br>Breather Vert Vecuum Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HL<br>HRD<br>HR<br>SR<br>RS<br>RS<br>RS<br>RS<br>RS<br>RS<br>RS<br>PBP<br>PBV<br>RS<br>RS                       | HL = 0.27115<br>HR = 0.1271 HR<br>HR = 58°R5<br>Tank Condition Characteristics<br>Equation<br>Meteorological Conditions <sup>2</sup><br>Equation                                                                | 1.5<br>0.0000<br>0.0000<br>1.38<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *<br>*<br>*<br>*<br>U72<br>palg<br>palg<br>U72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ingelia Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0625<br>Table 7.1-6<br>Table 7.1-6<br>Table 7.1-6<br>Default = 0.03<br>Default = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ledus regin<br>Roof Uninge<br>Roof Uninge<br>Tank Roof Roof Sape<br>Tank Shell Radus<br>Person Con<br>Tank Shell Radus<br>Solar Absorptance<br>Breather Vert Pressure Setting<br>Breather Vert Vecuum Setting<br>Person Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HL<br>HRD<br>HR<br>RS<br>RS<br>ALPHAR<br>ALPHAS<br>PBP<br>PBV<br>STER                                           | HL = 0.27415<br>HR = 0.0714R<br>HR = site Rts<br>Tank Condition Characteristics<br>Equation<br>Meteorological Conditions <sup>2</sup><br>Equation                                                               | 133<br>0.0000<br>0.0000<br>1.38<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n<br>n<br>n<br>paig<br>paig<br>paig<br>paig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rypice Assumption<br>Equation 1-17<br>Equation 1-18<br>Debut = 0.0525<br>Table 7.1-6<br>Table 7.1-6<br>Debut = 0.03<br>Debut = 0.03<br>Debut = 0.03<br>Debut = 0.03<br>Debut = 0.03<br>Debut = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Louis regin<br>Roof Outge<br>Tank Boot Height<br>Tank Core Nord Sope<br>Tank Shell Radius<br>Per unit of<br>Tank Nord Outlese Solar Absorptance<br>Tank Nord Outlese Solar Absorptance<br>Beather Vert Pessure Editing<br>Beather Vert Pessure Editing<br>Beather Vert Vecuum Setting<br>Period Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HL<br>HRD<br>HR<br>SR<br>RS<br>SITT<br>ALPHAR<br>ALPHAR<br>ALPHAR<br>ALPHAR<br>DP<br>PBV<br>DIST<br>SITT<br>TAX | HL = 0.27115<br>HR = (1571HR<br>HR = 587R5<br>Tank Condition Characteristics<br>Equation<br>Meteorological Conditions <sup>2</sup><br>Equation                                                                  | 13<br>0.0000<br>0.0000<br>1.38<br>(737)<br>0.28<br>0.28<br>0.03<br>-0.03<br>-0.03<br>(737)<br>79.5<br>5<br>579.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rypice Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0605<br>Table 7.1-6<br>Default = 0.03<br>Default = 0.03<br>Default = 0.03<br>RAG PCONTRELETION<br>Table 7.1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ledus regin<br>Roof Outage<br>Tank Roof Height<br>Tank Cone Roof Sape<br>Tank Shell Radus<br>Entropy of the Solar Absorptance<br>Tank Shell Surface Solar Absorptance<br>Breather Vent Pressure Setting<br>Breather Vent Vecuum Setting<br>Entropy Only Maximum Ambient Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HL<br>HRO<br>HR<br>SR<br>RS<br>ALPHAR<br>ALPHAR<br>PBP<br>PBV<br>COLLOL<br>TAX                                  | HE - 0.07148<br>HR - 1.07148<br>HR - SR RS<br>Tenk Consiston Characterister<br>Repution<br>Meteorological Consistons <sup>2</sup><br>Repution                                                                   | 1 13<br>0.0000<br>0.0000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000<br>0.00000<br>0.00000000                                                                                                                                                                       | н<br>н<br>н<br>н<br>1.7.2<br>лиц<br>лиц<br>77<br>76<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rypcia Assumption<br>Equation 1-17<br>Equation 1-18<br>Debut = 0.0525<br>Table 7.1-6<br>Table 7.1-6<br>Debut = 0.03<br>Debut = 0.03<br>Debut = 0.03<br>Pable 7.1-7<br>Unit Conversion<br>Debut = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ledus regin<br>Roof Oxinge<br>Tank Roof Height<br>Tank Core Boof Sept<br>Tank Deel Roof Sept<br>Tank Shell Radus<br>Sector Sector Sector Sector<br>Tank Shell Radus<br>Sector Vert Pressure Setting<br>Breather Vert Pressure Setting<br>Breather Vert Vecuum Setting<br>PrinceCor<br>Average Delly Maximum Ambient Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HL<br>HRO<br>HR<br>SR<br>RS<br>DIECI<br>ALPHAR<br>ALPHAR<br>PBP<br>PBV<br>DIECI<br>TAX                          | HL = 0.27145<br>HR = (15714R<br>HR = 58746<br>Tank Condition Characteristics<br>Equation<br>Meteorological Conditions <sup>7</sup><br>Repution                                                                  | 1.5<br>0.0000<br>0.0000<br>1.33<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R<br>R<br>R<br>R<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rypice Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0525<br>Table 7.1-6<br>Default = 0.03<br>Default = 0.03<br>Default = 0.03<br>Default = 0.03<br>Table 7.1-6<br>Default = 0.03<br>Table 7.1-7<br>Table 7.1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Average Delly Maximum Ambient Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HL<br>HRD<br>HR<br>SR<br>RS<br>ALPHAR<br>ALPHAR<br>ALPHAR<br>PBP<br>PBV<br>I/T TAX<br>TAN                       | HL = 0.07HS<br>HR = 0.07HS<br>HR = Sit RS<br>Trink Condition Characteristics<br>Idention<br>Meteorological Conditions <sup>7</sup><br>Idention                                                                  | 113<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 性<br>性<br>性<br>173<br>173<br>173<br>173<br>173<br>173<br>177<br>177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Typical Assumption<br>Equation 1-17<br>Equation 1-18<br>Debut = 0.0525<br>Table 7.1-6<br>Table 7.1-6<br>Debut = 0.03<br>Debut = 0.03<br>Debut = -0.03<br>Table 7.1-7<br>Unit Convenion<br>Table 7.1-7<br>Unit Convenion<br>Table 7.1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ledus regin     Roof Height     Tank Roof Roof Stage     Tank Short Roof Stage     Tank Shell Radus      Print Core Roof Stage     Tank Shell Radus      Print Shell Radus      Pr | HL<br>HRO<br>HR<br>SR<br>RS<br>ALPHAR<br>ALPHAR<br>PBP<br>PBV<br>SECT<br>TAX<br>TAN                             | HL = 0.27145<br>HR = (15714R<br>HR = 5/R*R5<br>Tank Condition Characteristics<br>(Spartion<br>Meteorological Conditions <sup>7</sup><br>(Spartion                                                               | 1.5<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0                                                                                 | を<br>を<br>た<br>し<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>こ<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>に<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>つ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>こ<br>つ<br>つ<br>つ<br>こ<br>つ<br>つ<br>つ<br>こ<br>つ<br>つ<br>つ<br>こ<br>つ<br>つ<br>つ<br>こ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ<br>つ | rightes Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0505<br>Table 7.1-6<br>Table 7.1-6<br>Default = 0.05<br>Default = 0.05<br>Default = 0.05<br>Default = 0.03<br>MARCPORT Information<br>Table 7.1-7<br>Unit Conversion<br>Unit Conversion<br>Table 7.1-7<br>Unit Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Average Delly Minimum Ambient Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HL<br>HRD<br>HR<br>SR<br>RS<br>SILECI<br>ALIPHAR<br>ALIPHAR<br>ALIPHAR<br>ALIPHAR<br>SILECI<br>TAX<br>TAN       | HL = 0.27115<br>HR = (15714R<br>HR = 58746<br>Tank Condition Characteristics<br>Equation<br>Meteorological Conditions <sup>7</sup><br>Equation                                                                  | 1.5<br>0.0000<br>0.0000<br>1.38<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0. | 性<br>性<br>性<br>性<br>性<br>に<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>し<br>た<br>し<br>し<br>た<br>し<br>し<br>た<br>し<br>し<br>た<br>し<br>し<br>た<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rypcia Assumption<br>Equation 1-17<br>Equation 1-18<br>Default = 0.0525<br>Table 7.1-6<br>Table 7.1-6<br>Table 7.1-6<br>Default = 0.03<br>Default = 0.03<br>Default = 0.03<br>Default = 0.03<br>Default = 0.03<br>Default = 0.03<br>Table 7.1-7<br>Unit Convention<br>Unit Convention<br>Unit Convention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Average Delly Minimum Ambient Temperature Average Delly Minimum Ambient Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HL<br>HRO<br>HR<br>SR<br>RS<br>ALPHAR<br>PBP<br>PBV<br>Cased<br>TAX<br>TAN<br>R                                 | HL = 0.57HS<br>HR = (137HR<br>HR = 5R*RS<br>Trail Condition Chara Actificity<br>(Appriles<br>Meteorological Conditions?<br>(Appriles<br>Meteorological Conditions?<br>(Appriles<br>R = 10.731 pain-\$3/8-mol-*R | 1 1 5<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                            | н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rypcia Assumption<br>Equation 1-17<br>Equation 1-18<br>Debut = 0.0525<br>Table 7.1-6<br>Table 7.1-6<br>Debut = 0.03<br>Debut = 0.0 |

| Stored Liquid Physical Property and Constants <sup>2</sup> |        |                                           |       |        |         |                      |  |
|------------------------------------------------------------|--------|-------------------------------------------|-------|--------|---------|----------------------|--|
| Parameter                                                  | Symbol | Equation                                  | Value |        | Unit    | AP-42 Ch.7 Reference |  |
| Vapor Molecular Weight                                     | MV     |                                           |       | 62     | b/b-mol | Table 7.1-2          |  |
| Vapor Pressure Equation Constant A                         | A      |                                           |       | 1.644  |         | Table 7.1-2          |  |
| Vapor Pressure Equation Constant B                         | в      |                                           |       | 5043.6 | *R      | Table 7.1-2          |  |
|                                                            |        | Frequently Used HS/D Fectored Constants   |       |        |         |                      |  |
| Parameter                                                  | Symbol | Equition                                  | Velue |        | Unit    | AP-42 Ch.7 Reference |  |
| Equation 1-27 Constant X                                   | х      | X = 0.8/(4.4°(HS/D) + 3.8)                |       | 0932   |         | Equation 1-27        |  |
| Equation 1-27 Constant Y                                   | ¥      | Y = 0.021/(4.4 (HS/D) + 3.8)              | -     | 10024  |         | Equation 1-27        |  |
| Equation 1-27 Constant Z                                   | z      | Z = 0.013*(HS/D)/(4.4*(HS/D) + 3.8)       |       | 3.0016 |         | Equation 1-27        |  |
| Equation 1-32 Constant M                                   | м      | M = (2.2"(HS/D) + 1.1)/(2.2"(HS/D) + 1.9) |       | 18136  |         | Equation 1-32        |  |

| Various Pressure Calculations                               |                              |                                                                                                            |                         |            |                      |  |  |  |  |
|-------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|------------|----------------------|--|--|--|--|
| Parameter                                                   | Symbol                       | Equation                                                                                                   | Value                   | Unit       | AP-42 Ch.7 Reference |  |  |  |  |
| True Vapor Pressure                                         | PVA                          | PVA = EXP(A - (B/TLA))                                                                                     | 8.5968                  | pala       | Equation 1-25        |  |  |  |  |
| Average Daily Vapor Pressure Range                          | DELTAPV                      | DELTAPV = PVX - PVN                                                                                        | 1.8634                  | paia       | Equation 1-0         |  |  |  |  |
| Vapor Pressure at Average Daily Maximum Liquid Surface Temp | PVX                          | PVX = EXP(A - (B/TLX))                                                                                     | 9.5681                  | pela       | Equation 1-25        |  |  |  |  |
| Vapor Pressure at Average Daily Minimum Liquid Surface Temp | PVN                          | PVN • EXP(A - (B/TLN))                                                                                     | 7.7047                  | pala       | Equation 1-25        |  |  |  |  |
| Breather Vent Pressure Setting Range                        | DELTAPB                      | DELTAPB = PBP - PBV                                                                                        | 0.06                    | peig       | Equation 1-10        |  |  |  |  |
|                                                             |                              | Various Temperature Calculations                                                                           |                         |            |                      |  |  |  |  |
| Parameter                                                   | Symbol                       | Equation .                                                                                                 | Value                   | Unit       | AP-42 Ch.7 Reference |  |  |  |  |
| Average Delly Ligstid Ruders Temperature                    | TIA                          | TI A = 40.5 - XYTAA + 40.5 + XYTB + YTAI PHARM + 21AI PHARM                                                | 531.3173                | *R         | Equation 1-27        |  |  |  |  |
| And a fearly country country in the second                  |                              | Take (as a range as a range as the range of a second of                                                    | 22 0263                 | *C         | Unit Conversion      |  |  |  |  |
| Average Daily Ambient Temperature                           | TAA                          | TAA = (TAX + TAN)/2                                                                                        | 528.72                  | 10         | Equation 1-30        |  |  |  |  |
| Average Daily Ambient Temperature Range                     | DELTATA                      | DELTATA = TAX - TAN                                                                                        | 20.9                    | 10         | Equation 1-11        |  |  |  |  |
| Liquid Bulk Temperature                                     | TB                           | T8 = TAA + 0.003"ALPHAS"I                                                                                  | 530.0468                | 18         | Equation 1-31        |  |  |  |  |
| Average Vapor Temperature                                   | TV                           | TV = M"TAA + 2"X"TB + 2"Y"ALPHAR"I + 2"Z"ALPHAS"I                                                          | 532.5878                | *R         | Equation 1-32        |  |  |  |  |
| Average Daily Vapor Temperature Range                       | DELTATV                      | DELTATV = (1 - 2%) DELTATA + 4"Y"ALPHAR"I + 4"Z"ALPHAS"I                                                   | 24.2448                 | *R         | Equation 1-6         |  |  |  |  |
| Average Delly Meximum Limit Ruders Temperature              | TI X                         | TIX - TIA + 0 28 DELTATV                                                                                   | 537.3784                | *R         | Figure 7.1-17        |  |  |  |  |
| Average bery meaning include contace remperature            |                              |                                                                                                            | 25.3936                 | *C         | Unit Conversion      |  |  |  |  |
| Average Daily Minimum Liquid Burleys Temperature            | TIN                          | TIN - TIA - 028 DELTATV                                                                                    | 525.2561                | *R         | Figure 7.1-17        |  |  |  |  |
| Average dely minimum digate dellade religionation           | 164                          |                                                                                                            | 18.6589                 | *C         | Unit Conversion      |  |  |  |  |
|                                                             |                              |                                                                                                            |                         |            |                      |  |  |  |  |
| Notesc                                                      | 1. Tank is a<br>2. Meteorolo | rectangular vessel. Calculations are completed using methodology for a<br>gical Data for Las Vegas, Newsda | vertical fixed roof tar | <b>k</b> . |                      |  |  |  |  |

| Fitting Type                    | Factor<br>(Ib/unit-<br>hr) | Project<br>Count | VOC<br>Emission<br>(lb/yr) | HAP<br>Emission<br>(Ib/yr) | VOC<br>Emission<br>(ton/yr) | HAP<br>Emission<br>(ton/yr) |
|---------------------------------|----------------------------|------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|
| Valves (Butane)                 | 9.48E-05                   | 190              | 157.79                     | 15.78                      | 0.08                        | 0.01                        |
| Valves (Gasoline,<br>Ethanol)   | 9.48E-05                   | 103              | 85.54                      | 4.49                       | 0.04                        | 0.00                        |
| Fittings (Butane)               | 1.76E-05                   | 442              | 68.15                      | 6.81                       | 0.03                        | 0.00                        |
| Fittings (Gasoline,<br>Ethanol) | 1.76E-05                   | 357              | 55.04                      | 2.89                       | 0.03                        | 0.00                        |
| Pump Seals<br>(Butane)          | 1.19E-03                   | 1                | 10.42                      | 1.04                       | 0.01                        | 0.00                        |
| Relief Devices<br>(Butane)      | 2.87E-04                   | 32               | 80.45                      | 8.05                       | 0.04                        | 0.00                        |
| Other (Butane)                  | 2.87E-04                   | 6                | 15.08                      | 1.51                       | 0.01                        | 0.00                        |
| Other (Gasoline,<br>Ethanol)    | 2.87E-04                   | 9                | 22.63                      | 1.19                       | 0.01                        | 0.00                        |
|                                 | Total                      | 1,140            | 495.10                     | 41.76                      | 0.25                        | 0.02                        |

## **Post-Construction Butane Blending Light Liquid Service Components**

## **Gasoline and Butane HAP Percentages**

| lian                   | Gasoline Regular                | Butane                          |  |  |
|------------------------|---------------------------------|---------------------------------|--|--|
| HAP                    | HAP-to-VOC Percent <sup>1</sup> | HAP-to-VOC Percent <sup>2</sup> |  |  |
| Benzene                | 0.9000%                         | 0.0000%                         |  |  |
| Ethylbenzene           | 0.1000%                         | 0.0000%                         |  |  |
| Hexane                 | 1.6000%                         | 10.0000%                        |  |  |
| Naphthalene            | 0.0500%                         | 0.0000%                         |  |  |
| Toluene                | 1.3000%                         | 0.0000%                         |  |  |
| 2,2,4-Trimethylpentane | 0.8000%                         | 0.0000%                         |  |  |
| Xylenes                | 0.5000%                         | 0.0000%                         |  |  |
| Total HAPs             | 5.2500%                         | 10.0000%                        |  |  |

<sup>1</sup>Emission factors are marketing terminal average emission factors from the EPA's "Protocol for Equipment Leak Emission Estimates" November 1995, EPA 4531, R - 95 - 017, Table 2 - 3.

<sup>2</sup>Hexane percentage (by weight) range on SDS provided in butane blending minor revision application is 1 - 10%, it is conservatively assumed to be 10% for the purposes of these calculations.

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 24 of 33

| Fitting Type                     | Factor<br>(Ib/unit-hr) | Total<br>Fittings | VOC<br>Emission<br>(Ib/yr) | HAP<br>Emission<br>(Ib/yr) | VOC<br>Emission<br>(ton/yr) | HAP<br>Emission<br>(ton/yr) |
|----------------------------------|------------------------|-------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|
| Valves (Gas Service)             | 2.87E-05               | 2,376             | 597.35                     | 31.36                      | 0.30                        | 0.02                        |
| Valves (Light Liquid<br>Service) | 9.48E-05               | 1,523             | 1264.77                    | 73.90                      | 0.63                        | 0.04                        |
| Valves (Heavy Liquid<br>Service) | 9.48E-05               | 1,598             | 1327.06                    | 69.67                      | 0.66                        | 0.03                        |
| Fittings (Gas)                   | 9.26E-05               | 6,455             | 5236.14                    | 274.90                     | 2.62                        | 0.14                        |
| Fittings (Light Liquid)          | 1.76E-05               | 4,093             | 631.04                     | 36.37                      | 0.32                        | 0.02                        |
| Fittings (Heavy<br>Liquid)       | 1.76E-05               | 4,620             | 712.29                     | 37.40                      | 0.36                        | 0.02                        |
| Pump Seals (Gas)                 | 1.43E-04               | 56                | 70.15                      | 3.68                       | 0.04                        | 0.00                        |
| Pump Seals (Light Liquid)        | 1.19E-03               | 28                | 291.88                     | 15.82                      | 0.15                        | 0.01                        |
| Pump Seals (Heavy<br>Liquid)     | 1.19E-03               | 27                | 281.46                     | 14.78                      | 0.14                        | 0.01                        |
| Relief Devices (Light Liquid)    | 2.87E-04               | 44                | 110.62                     | 9.63                       | 0.06                        | 0.00                        |
| Relief Devices<br>(Heavy Liquid) | 2.87E-04               | 24                | 60.34                      | 3.17                       | 0.03                        | 0.00                        |
| Relief Devices (Gas)             | 2.87E-04               | 35                | 87.99                      | 4.62                       | 0.04                        | 0.00                        |
| Other (Gas)                      | 2.65E-04               | 434               | 1007.49                    | 52.89                      | 0.50                        | 0.03                        |
| Other (Light Liquid)             | 2.87E-04               | 254               | 638.59                     | 34.24                      | 0.32                        | 0.02                        |
| Other (Heavy Liquid)             | 2.87E-04               | 321               | 807.03                     | 42.37                      | 0.40                        | 0.02                        |
|                                  | Total                  | 21,888            | 13,124.21                  | 704.79                     | 6.56                        | 0.35                        |

### Piping and Fittings VOC and HAP Emissions Calculations

# **Fugitive Emissions**

| Liquid VOC Weight Fraction          | 100% |
|-------------------------------------|------|
| Hexane Weight Fraction <sup>1</sup> | 10%  |

| Light Liquid        |                                                       |          |          |            |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------|----------|----------|------------|--|--|--|--|--|--|
| Number <sup>2</sup> | Component (kg/hr of THC per<br>component <sup>3</sup> |          | kg/hr    | lb/yr      |  |  |  |  |  |  |
| 463                 | Valves                                                | 4.30E-05 | 0.019909 | 383.686248 |  |  |  |  |  |  |
| 2                   | Pump seals                                            | 5.40E-04 | 0.00108  | 20.81376   |  |  |  |  |  |  |
| 1017                | Connectors                                            | 8.00E-06 | 0.008136 | 156.796992 |  |  |  |  |  |  |
|                     | -                                                     | Total    | 0.029125 | 561.297    |  |  |  |  |  |  |

| Fugitive Total Emissions |                  |                  |                  |  |  |  |  |  |  |
|--------------------------|------------------|------------------|------------------|--|--|--|--|--|--|
|                          | Annual Emissions | Annual Emissions | Annual Emissions |  |  |  |  |  |  |
|                          | (lb/yr)          | (lb/hr)          | (tpy)            |  |  |  |  |  |  |
| VOC                      | 561.297          | 0.064075         | 0.2806485        |  |  |  |  |  |  |
| Hexane                   | 56.1297          | 0.0064075        | 0.02806485       |  |  |  |  |  |  |

|        | <ol> <li>Hexane percentage (by weight) range on SDS is 1-10%, it is<br/>conservatively assumed to be 10% for the purposes of these<br/>calculations.</li> </ol> |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes: | <ol><li>Component counts are estimated from the process P&amp;IDs.</li></ol>                                                                                    |
|        | 3. Emission factors are marketing terminal average emission factors                                                                                             |
|        | from the EPA's "Protocol for Equipment Leak Emission Estimates"                                                                                                 |
|        | November 1995, EPA 4531, R-95-017, Table 2-3.                                                                                                                   |

# Haul Roads Calculations

|                                                     | Uncontrolled<br>PM <sub>10</sub> Emission<br>Factor<br>(Ib/VMT) <sup>1</sup>                                                                                                                                                                                                              | Uncontrolled<br>PM <sub>2.5</sub> Emission<br>Factor<br>(Ib/VMT) <sup>2,3</sup> | Assumed Control<br>Efficiency for<br>PM <sub>10</sub> and PM <sub>2.5</sub><br>(%) | Annual<br>Number of<br>Trips <sup>4,5</sup> | Trip Travel<br>Distance <sup>6,7</sup> | VMT/Year <sup>8</sup> | PM <sub>10</sub><br>Emissions<br>(Ib/year) | PM <sub>10</sub> Emissions<br>(ton/year) | PM <sub>2.5</sub><br>Emissions<br>(lb/year) <sup>7,8</sup> | PM <sub>2.5</sub><br>Emissions<br>(ton/year) <sup>6</sup> |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|-----------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Paved Roads                                         | 7.57                                                                                                                                                                                                                                                                                      | 1.14                                                                            | 98                                                                                 | 199,260                                     | 0.50                                   | 99,630                | 15,083.98                                  | 7.54                                     | 2,271.56                                                   | 1.14                                                      |
| Unpaved Roads                                       | 7.57                                                                                                                                                                                                                                                                                      | 0.767                                                                           | 90                                                                                 | 2,555                                       | 0.64                                   | 1,635                 | 1,237.85                                   | 0.62                                     | 125.42                                                     | 0.06                                                      |
| TOTAL (tpy)                                         |                                                                                                                                                                                                                                                                                           |                                                                                 |                                                                                    |                                             |                                        |                       |                                            | 8.16                                     |                                                            | 1.20                                                      |
| <sup>1</sup> 7.57 lb/VMT from                       | Justification of DA                                                                                                                                                                                                                                                                       | Q's Default Emissio                                                             | on Factor.                                                                         |                                             |                                        |                       |                                            |                                          |                                                            |                                                           |
| <sup>2</sup> 1.14 lbs/VMT from                      | n DAQ's Paved Haul                                                                                                                                                                                                                                                                        | Roads Emission Fa                                                               | actor for PM <sup>2.5</sup> .                                                      |                                             |                                        |                       |                                            |                                          |                                                            |                                                           |
| <sup>3</sup> 0.767 lbs/VMT fro                      | om DAQ's Unpaved                                                                                                                                                                                                                                                                          | Haul Roads Emissi                                                               | ons Factor for PM <sup>2.5</sup> .                                                 |                                             |                                        |                       |                                            |                                          |                                                            |                                                           |
| <sup>4</sup> Number of paveo<br>trucks is calculate | <sup>4</sup> Number of paved road trips determined using fueling tank trucks and trailers, butane delivery trucks, ethanol testing trucks, golf carts, and terminal trucks. Number of golf carts and terminal trucks is calculated from number of half-mile distance increments traveled. |                                                                                 |                                                                                    |                                             |                                        |                       |                                            |                                          |                                                            |                                                           |
| <sup>5</sup> Number of unpa                         | ved road trips dete                                                                                                                                                                                                                                                                       | rmined using golf c                                                             | arts and terminal tru                                                              | cks.                                        |                                        |                       |                                            |                                          |                                                            |                                                           |
| <sup>6</sup> Paved road travel                      | s Paved road travel distance normalized to half-mile trips to maintain consistency with previous EU E01 methodology for fueling tank trucks and trailers and butane delivery trucks.                                                                                                      |                                                                                 |                                                                                    |                                             |                                        |                       |                                            |                                          |                                                            |                                                           |
| <sup>7</sup> Unpaved road tra                       | <sup>7</sup> Unpaved road travel distance based on amount of facility the remains unpaved.                                                                                                                                                                                                |                                                                                 |                                                                                    |                                             |                                        |                       |                                            |                                          |                                                            |                                                           |
| <sup>8</sup> VMT = Ann. # of tr                     | ips * trip travel dis                                                                                                                                                                                                                                                                     | tance                                                                           |                                                                                    |                                             |                                        |                       |                                            |                                          |                                                            |                                                           |

## **Original Haul Road Calculation for Reference**

1,485,956,934 gallons / 8571 gal per truck = 173,375 trucks

## 173,375 trucks \* 0.5 mi \* 7.57 lb per VMT \* 0.02% / 2000 = 6.56 tpy

|                                                                                                                                                     | Total Miles   Total Miles Per |         |                | Vehicle Miles | PM10 Emission       |            | Annual E   | Emissions |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|----------------|---------------|---------------------|------------|------------|-----------|
|                                                                                                                                                     | Per Trip                      | Trip    | Maximum        | Travelled     | Factor <sup>1</sup> | Control    | PM10       | PM10      |
|                                                                                                                                                     | (feet)                        | (miles) | Trips per Year | (miles/year)  | (Ib/VMT)            | Efficiency | (lbs/year) | (tpy)     |
| Haul Road (Paved)                                                                                                                                   | 2390                          | 0.45    | 025            | 418.7         | 7.57                | 98%        | 63.39      | 0.03      |
| Haul Road (Unpaved Haul Road)                                                                                                                       | 250                           | 0.05    | 825            | 43.8          | 1.51                | 90%        | 33.15      | 0.02      |
|                                                                                                                                                     |                               |         |                |               |                     | Totals:    | 96.55      | 0.05      |
|                                                                                                                                                     |                               |         |                |               |                     |            |            |           |
| <ol> <li>DAQ-default emission factor for haul roads.</li> <li>Clark County approved control efficiency for paved and unpaved haul roads.</li> </ol> |                               |         |                |               |                     |            |            |           |

### **Greenhouse Gas PTE**

GHG PTE was calculated using the 2023 GHG Emission Factors Hub spreadsheet from EPA's website (GHG Emission Factors Hub | US EPA). The four stationary combustion units included in this calculation were the flare (EU B10), SVE thermal oxidizer component of the GW Treatment System (EU SR04), air compressor (EU B11), and fire water engine (D02). From calculations used to establish criteria pollutant PTEs, the fuel type and fuel consumption amounts were determined. The fuel type for B10 and SR04 is propane and diesel (distillate fuel oil No. 2) for B11 and D02.

### **GHG PTE** — Fuel Factors

| Fuel Type                 | CO <sub>2</sub> Factor        | CH₄ Factor       | N₂O Factor                   |
|---------------------------|-------------------------------|------------------|------------------------------|
|                           | kg CO₂ per mmBtu              | g CH₄ per mmBtu  | g N <sub>2</sub> O per mmBtu |
| Propane Gas               | 61.46                         | 3.0              | 0.60                         |
|                           | kg CO <sub>2</sub> per gallon | g CH₄ per gallon | g N₂O per gallon             |
| Distillate Fuel Oil No. 2 | 10.21                         | 0.41             | 0.08                         |

### **GHG PTE** — **Emissions**

| Fauinment Fuel Fuel               |         | Fuel kg/yr |       |                 | tonne/yr        |                  |                 |                 |                  |                   |
|-----------------------------------|---------|------------|-------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|-------------------|
| Equipment                         | Туре    | Amount     | Unit  | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> e |
| Flare (B10)                       | Propane | 9,373.27   | mmBTU | 576,081         | 28.12           | 5.62             | 576.08          | 0.03            | 0.01             | 578.46            |
| SVE Thermal<br>Oxidizer<br>(SR04) | Propane | 175,204.38 | mmBTU | 10,768,061      | 525.61          | 105.12           | 10,768.06       | 0.53            | 0.11             | 10,812.53         |
| Air<br>Compressor<br>(B11)        | Diesel  | 270        | Gals  | 2,757           | 0.11            | 0.02             | 2.76            | 0               | 0                | 2.77              |
| Fire Water<br>Engine (D02)        | Diesel  | 4,600.00   | Gals  | 46,966          | 1.89            | 0.37             | 46.97           | 0               | 0                | 47.12             |
|                                   |         |            |       |                 |                 |                  |                 |                 | Total            | 11,440.88         |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 27 of 33

# **Controls and Applicable Requirement by Individual Storage Tank**

| EU  | Application<br>Date | Install<br>Year | Capacity<br>(gallons) | Capacity<br>(barrels) | Facility<br>ID | Control Requirements                                                   | Primary Seal Type             | Secondary Seal<br>Type                 | AR        |
|-----|---------------------|-----------------|-----------------------|-----------------------|----------------|------------------------------------------------------------------------|-------------------------------|----------------------------------------|-----------|
| A01 | 08/15/1973          | 1960            | 476,000               | 11,200                | 530            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Fixed Tip       | 6B,<br>WW |
| A02 | 08/15/1973          | 1961            | 541,000               | 12,890                | 531            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Fixed Tip       | 6B,<br>WW |
| A03 | 08/15/1973          | 1961            | 339,000               | 8,080                 | 532            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Fixed Tip       | 6B,<br>WW |
| A04 | 08/15/1973          | 1960            | 476,000               | 11,330                | 533            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Fixed Tip       | 6B,<br>WW |
| A05 | 08/15/1973          | 1961            | 339,000               | 8,080                 | 534            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Fixed Tip       | 6B,<br>WW |
| A06 | 08/15/1973          | 1961            | 339,000               | 8,080                 | 535            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Fixed Tip       | 6B,<br>WW |
| A07 | 08/15/1973          | 1961            | 737,000               | 17,550                | 536            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Fabric<br>Wiper | 6B,<br>WW |
| A08 | 08/15/1973          | 1961            | 935,000               | 22,250                | 537            | External Floating Roof<br>with primary and<br>secondary seals          | Galvanized Steel<br>Shoe      | Metallic Spring<br>Wiper               | 6B,<br>WW |
| A09 | 08/15/1973          | 1961            | 476,000               | 11,330                | 538            | External Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Wiper Tip       | 6B,<br>WW |
| A10 | 08/15/1973          | 1961            | 476,000               | 11,330                | 539            | External Floating Roof<br>with primary and<br>secondary seals          | Galvanized Steel<br>Shoe      | Metallic Spring<br>Wiper               | 6B,<br>WW |
| A11 | 08/15/1973          | 1961            | 709,600               | 16,320                | 540            | Internal Floating Roof<br>with primary and<br>secondary seals          | Low Profile<br>Stainless Shoe | Compression<br>Plate - Wiper Tip       | 6B,<br>WW |
| A12 | 08/15/1973          | 1961            | 1,055,000             | 25,100                | 541            | Domed External<br>Floating Roof with<br>primary and secondary<br>seals | Stainless Steel<br>Shoe       | Compression<br>Plate - Wiper Tip       | 6B,<br>WW |
| A13 | 09/18/1989          | 1961            | 846,000               | 18,000                | 524            | Internal Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe       | Compression<br>Plate - Wiper Tip       | 6B,<br>WW |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 28 of 33

| EU  | Application<br>Date | Install<br>Year | Capacity<br>(gallons) | Capacity<br>(barrels) | Facility<br>ID | Control Requirements                                           | Primary Seal Type        | Secondary Seal<br>Type           | AR               |
|-----|---------------------|-----------------|-----------------------|-----------------------|----------------|----------------------------------------------------------------|--------------------------|----------------------------------|------------------|
| A14 | 08/15/1973          | 1970            | 1,975,000             | 45,000                | 542            | Internal Floating Roof,<br>Primary Seal                        | Stainless Steel<br>Shoe  | None                             |                  |
| A15 | 08/15/1973          | 1970            | 1,470,000             | 35,000                | 543            | Internal Floating Roof,<br>primary Seal                        | Stainless Steel<br>Shoe  | None                             |                  |
| A16 | 09/16/1998          | 1991            | 1,470,000             | 37,000                | 545            | Internal Floating Roof<br>with primary and<br>secondary seals  | Galvanized Steel<br>Shoe | Compression<br>Plate - Wiper Tip | Kb,<br>6B,<br>WW |
| A17 | 11/15/1995          | 1995            | 1,680,000             | 40,000                | 546            | Internal Floating Roof,<br>with primary and<br>secondary seals | Stainless Steel<br>Shoe  | Compression<br>Plate - Fixed Tip | Kb,<br>6B,<br>WW |
| A18 | 4/25/1997           | 1961            | 155,000               | 4,000                 | 522            | Internal Floating Roof,<br>with primary and<br>secondary seals | Stainless Steel<br>Shoe  | Compression<br>Plate - Wiper Tip |                  |
| A19 | 04/25/1997          | 1982            | 1,890,000             | 50,000                | 525            | Fixed Roof                                                     | None                     | None                             |                  |
| A20 | 04/25/1997          | 1988            | 2,015,000             | 50,000                | 526            | Fixed Roof                                                     | None                     | None                             |                  |
| A21 | 04/25/1997          | 1995            | 1,680,000             | 50,000                | 547            | Internal Floating Roof<br>with primary and<br>secondary seals  | Galvanized Steel<br>Shoe | Compression<br>Plate - Wiper Tip | Kb,<br>6B,<br>WW |
| A22 | 11/15/1995          | 1995            | 2,100,000             | 50,000                | 512            | Fixed Roof                                                     | None                     | None                             |                  |
| A23 | 08/15/1973          | 1961            | 1,680,000             | 40,000                | 510            | External Floating Roof,<br>Primary Seal                        | Stainless Steel<br>Shoe  | None                             |                  |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 29 of 33

| EU  | Application<br>Date | Install<br>Year | Capacity<br>(gallons) | Capacity<br>(barrels) | Facility<br>ID                          | Control Requirements                                          | Primary Seal Type        | Secondary Seal<br>Type                 | AR               |
|-----|---------------------|-----------------|-----------------------|-----------------------|-----------------------------------------|---------------------------------------------------------------|--------------------------|----------------------------------------|------------------|
| A24 | 08/15/1973          | 1961            | 1,680,000             | 40,000                | 511                                     | External Floating Roof,<br>Primary Seal                       | Stainless Steel<br>Shoe  | None                                   |                  |
| A27 | 4/25/1997           | 1961            | 1,680,000             | 40,000                | 501                                     | Internal Floating Roof<br>AST w/Primary and<br>Secondary Seal | Stainless Steel<br>Shoe  | Compression<br>Plate - Fabric<br>Wiper |                  |
| A25 | 05/08/2001          | 2002            | 55                    | 1.3                   | ASA<br>Conduc<br>tivity<br>Improv<br>er | Fixed Roof                                                    | None                     | None                                   |                  |
| A26 | 04/25/1997          | 1962            | 10,700                | 252                   | 500<br>AIA                              | Fixed Roof                                                    | None                     | None                                   |                  |
| A28 | 08/30/1990          | 1961            | 393,000               | 10,000                | 523                                     | Internal Floating Roof<br>with primary and<br>secondary seals | Galvanized Steel<br>Shoe | Compression<br>Plate - Wiper Tip       | 6B,<br>WW        |
| A29 | 12/13/1978          | 1978            | 462,000               | 11,000                | 544                                     | Internal Floating Roof<br>with primary and<br>secondary seals | Stainless Steel<br>Shoe  | Compression<br>Plate - Wiper Tip       | Ka,<br>6B,<br>WW |
| A30 | 04/25/1997          | 1987            | 10,700                | 252                   | 533 A                                   | Fixed Roof                                                    | None                     | None                                   |                  |
| A31 | 04/25/1997          | 1961            | 19,600                | 464                   | 537 A                                   | Fixed Roof                                                    | None                     | None                                   |                  |
| A32 | 04/25/1997          | 1990            | 16,100                | 380                   | 541 A                                   | Fixed Roof                                                    | None                     | None                                   |                  |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 30 of 33

| EU  | Application<br>Date | Install<br>Year | Capacity<br>(gallons) | Capacity<br>(barrels) | Facility<br>ID | Control Requirements                                                   | Primary Seal Type       | Secondary Seal<br>Type           | AR        |
|-----|---------------------|-----------------|-----------------------|-----------------------|----------------|------------------------------------------------------------------------|-------------------------|----------------------------------|-----------|
| A33 | 04/25/1997          | 1990            | 16,100                | 380                   | 541 B          | Fixed Roof                                                             | None                    | None                             |           |
| A34 | 04/25/1997          | 1982            | 9,000                 | 215                   | 542D           | Fixed Roof                                                             | None                    | None                             |           |
| A35 | 04/25/1997          | 1994            | 6,000                 | 142                   | 542A           | Fixed Roof                                                             | None                    | None                             |           |
| A36 | 04/25/1997          | 1961            | 6,000                 | 143                   | 531A           | Fixed Roof                                                             | None                    | None                             |           |
| A37 | 04/25/1997          | 1988            | 500                   | 12                    | 542C           | Fixed Roof                                                             | None                    | None                             |           |
| A38 | 04/25/1997          | 1961            | 20,000                | 447                   | 537 B          | Fixed Roof                                                             | None                    | None                             |           |
| A39 | 04/25/1997          | 1961            | 4,900                 | 119                   | 531B           | Fixed Roof                                                             | None                    | None                             |           |
| A45 | 09/16/1998          | 1961            | 541,400               | 12,890                | 548            | Domed External<br>Floating Roof with<br>primary and secondary<br>seals | Stainless Steel<br>Shoe | Compression<br>Plate - Wiper Tip | 6B,<br>WW |
| A46 | 09/16/1998          | 1961            | 541,000               | 12,890                | 549            | Domed External<br>Floating Roof with<br>primary and secondary<br>seals | Stainless Steel<br>Shoe | Compression<br>Plate - Fixed Tip | 6B,<br>WW |
| A47 | 09/16/1998          | 1971            | 840,000               | 20,000                | 550            | Internal Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe | Compression<br>Plate - Fixed Tip | 6B,<br>WW |
| A48 | 04/25/1997          | 1961            | 424,200               | 10,100                | 551            | Internal Floating Roof<br>with primary and<br>secondary seals          | Stainless Steel<br>Shoe | Compression<br>Plate - Fixed Tip | 6B,<br>WW |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 31 of 33

| EU                | Application<br>Date | Install<br>Year | Capacity<br>(gallons)                   | Capacity<br>(barrels) | Facility<br>ID | Control Requirements                                           | Primary Seal Type        | Secondary Seal<br>Type                 | AR               |
|-------------------|---------------------|-----------------|-----------------------------------------|-----------------------|----------------|----------------------------------------------------------------|--------------------------|----------------------------------------|------------------|
| A49<br>(inactive) | 09/16/1998          | 1988            | 1000<br>(600 per<br>inspection<br>form) | 14                    | 542B           | Fixed Roof                                                     | None                     | None                                   |                  |
| A53               | 07/15/1998          | 1991            | 11,300                                  | 238                   | 548B           | Fixed Roof                                                     | None                     | None                                   |                  |
| A54               | 07/15/1998          | 1991            | 10,000                                  | 238                   | 548A           | Fixed Roof                                                     | None                     | None                                   |                  |
| A56               | 09/16/1998          | 2002            | 2,100,000                               | 50,000                | 513            | Internal Floating Roof<br>with primary and<br>secondary seals  | Stainless Steel<br>Shoe  | Compression<br>Plate - Wiper Tip       |                  |
| A57               | 09/16/1998          | 2002            | 2,100,000                               | 50,000                | 514            | Internal Floating Roof,<br>with primary and<br>secondary seals | Stainless Steel<br>Shoe  | Compression<br>Plate - Wiper Tip       |                  |
| A58               | 02/05/2003          | 2002            | 3,360,000                               | 80,000                | 553            | Internal Floating Roof<br>with primary and<br>secondary seals  | Stainless Steel<br>Shoe  | Compression<br>Plate - Fixed Tip       | Kb,<br>6B,<br>WW |
| A59               | 02/05/2003          | 2006            | 3,360,000                               | 80,000                | 554            | Internal Floating Roof<br>with primary and<br>secondary seals  | Galvanized Steel<br>Shoe | Compression<br>Plate - Fixed Tip       | Kb,<br>6B,<br>WW |
| A60               | 02/05/2003          | 2006            | 3,360,000                               | 80,000                | 555            | Internal Floating Roof<br>with primary and<br>secondary seals  | Galvanized Steel<br>Shoe | Compression<br>Plate - Fixed Tip       | Kb,<br>6B,<br>WW |
| A61               | 02/05/2003          | 2002            | 1,680,000                               | 40,000                | 552            | Internal Floating Roof<br>with primary and<br>secondary seals  | Stainless Steel<br>Shoe  | Compression<br>Plate - Fixed Tip       | Kb,<br>6B,<br>WW |
| B04               | 08/22/1988          | 1961            | 126,000                                 | 3,000                 | 500            | Internal Floating Roof<br>with primary and<br>secondary seals  | Stainless Steel<br>Shoe  | Rubber Wiper                           | Kb,<br>6B,<br>WW |
| B05               | 02/23/1988          | 1961            | 212,000                                 | 5,000                 | 521            | Internal Floating Roof<br>with primary and<br>secondary seals  | Stainless Steel<br>Shoe  | Compression<br>Plate – Fabric<br>Wiper | Kb,<br>6B,<br>WW |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 32 of 33

| EU  | Application<br>Date | Install<br>Year | Capacity<br>(gallons) | Capacity<br>(barrels) | Facility<br>ID           | Control Requirements                                                                                       | Primary Seal Type | Secondary Seal<br>Type | AR |
|-----|---------------------|-----------------|-----------------------|-----------------------|--------------------------|------------------------------------------------------------------------------------------------------------|-------------------|------------------------|----|
| D01 | 4/25/1997           | 1961            | 250                   | 6                     | DG                       | Fixed Roof                                                                                                 | None              | None                   |    |
| H02 | 08/31/2010          | Unsure          | 1,000                 | 24                    | Mainlin<br>e sump        | Fixed roof UST with vent                                                                                   | NA                | NA                     |    |
| Н03 | 08/31/2010          | Unsure          | 3,000                 | 71                    | Rack<br>sump             | Fixed roof UST with vent                                                                                   | NA                | NA                     |    |
| H04 | 08/31/2010          | Unsure          | 4,200                 | 100                   | New<br>Mainlin<br>e sump | Fixed roof UST with vent                                                                                   | NA                | NA                     |    |
| H06 | 08/31/2010          | 2006            | 2,000                 | 48                    | Nellis<br>sump           | Fixed roof UST with vent                                                                                   | NA                | NA                     |    |
| H07 | 08/31/2010          | Unsure          | 1,000                 | 24                    | Rack<br>sump             | Fixed roof UST with vent                                                                                   | NA                | NA                     |    |
| H08 | 08/31/2010          | Unsure          | 100                   | 2                     | QC<br>sump               | Fixed roof UST with vent                                                                                   | NA                | NA                     |    |
| H10 | 08/31/2010          | 1961            | 10,000                | 238                   | Tank<br>500B             | AST VFR tank                                                                                               | None              | None                   |    |
| H11 | 08/31/2010          | Unsure          | 0                     | 0                     | OWS<br>tank              | AST Tank with P/V<br>valves and Carbon<br>adsorption unit with<br>95% control efficiency                   |                   |                        |    |
| H12 | 08/31/2010          | Unsure          | 1,000                 | 24                    | OST-<br>1200-<br>DW      | Dual wall HFR AST.<br>Tank with P/V valves<br>and Carbon adsorption<br>unit with 95% control<br>efficiency |                   |                        |    |
| H14 | 6/20/2013           | 2002            | 350                   | 8                     | ASA<br>Tote              | Rectangular AST, fixed roof                                                                                | None              | None                   |    |

Technical Support Document for Part 70 OP Calnev Pipe Line LLC Source: 00013 Page 33 of 33

| EU  | Application<br>Date | Install<br>Year | Capacity<br>(gallons) | Capacity<br>(barrels) | Facility<br>ID                | Control Requirements        | Primary Seal Type | Secondary Seal<br>Type | AR |
|-----|---------------------|-----------------|-----------------------|-----------------------|-------------------------------|-----------------------------|-------------------|------------------------|----|
| H15 | 6/20/2013           | 2002            | 350                   | 8                     | CI Tote                       | Rectangular AST, fixed roof | None              | None                   |    |
| H16 | 6/20/2013           | 2002            | 350                   | 8                     | Lane 7<br>Red<br>Dye<br>Tote  | Rectangular AST, fixed roof | None              | None                   |    |
| H17 | 2/28/2019           | 2002            | 350                   | 8                     | Lane 12<br>Red<br>Dye<br>Tote | Rectangular AST, fixed roof | None              | None                   |    |